541 research outputs found

    Two Wolf-Rayet stars at the heart of colliding-wind binary Apep

    Get PDF
    Infrared imaging of the colliding-wind binary Apep has revealed a spectacular dust plume with complicated internal dynamics that challenges standard colliding-wind binary physics. Such challenges can be potentially resolved if a rapidly-rotating Wolf-Rayet star is located at the heart of the system, implicating Apep as a Galactic progenitor system to long-duration gamma-ray bursts. One of the difficulties in interpreting the dynamics of Apep is that the spectral composition of the stars in the system was unclear. Here we present visual to near-infrared spectra that demonstrate that the central component of Apep is composed of two classical Wolf-Rayet stars of carbon- (WC8) and nitrogen-sequence (WN4-6b) subtypes. We argue that such an assignment represents the strongest case of a classical WR+WR binary system in the Milky Way. The terminal line-of-sight wind velocities of the WC8 and WN4-6b stars are measured to be 2100 ± 200 and 3500 ± 100 km s−1, respectively. If the mass-loss rate of the two stars are typical for their spectral class, the momentum ratio of the colliding winds is expected to be ≈ 0.4. Since the expansion velocity of the dust plume is significantly smaller than either of the measured terminal velocities, we explore the suggestion that one of the Wolf-Rayet winds is anisotropic. We can recover a shock-compressed wind velocity consistent with the observed dust expansion velocity if the WC8 star produces a significantly slow equatorial wind with a velocity of ≈530 km s−1. Such slow wind speeds can be driven by near-critical rotation of a Wolf-Rayet star

    The extreme colliding-wind system Apep : resolved imagery of the central binary and dust plume in the infrared

    Get PDF
    The recent discovery of a spectacular dust plume in the system 2XMM J160050.7–514245 (referred to as ‘Apep’) suggested a physical origin in a colliding-wind binary by way of the ‘Pinwheel’ mechanism. Observational data pointed to a hierarchical triple-star system, however, several extreme and unexpected physical properties seem to defy the established physics of such objects. Most notably, a stark discrepancy was found in the observed outflow speed of the gas as measured spectroscopically in the line-of-sight direction compared to the proper motion expansion of the dust in the sky plane. This enigmatic behaviour arises at the wind base within the central Wolf–Rayet binary: a system that has so far remained spatially unresolved. Here, we present an updated proper motion study deriving the expansion speed of Apep’s dust plume over a 2-year baseline that is four times slower than the spectroscopic wind speed, confirming and strengthening the previous finding. We also present the results from high angular resolution near-infrared imaging studies of the heart of the system, revealing a close binary with properties matching a Wolf–Rayet colliding-wind system. Based on these new observational constraints, an improved geometric model is presented yielding a close match to the data, constraining the orbital parameters of the Wolf–Rayet binary and lending further support to the anisotropic wind model

    Domain Walls in Massive Supergravities

    Get PDF
    We show how toroidally-compactified eleven-dimensional supergravity can be consistently truncated to yield a variety of maximally-supersymmetric ``massive'' supergravities in spacetime dimensions D≀8D\le 8. The mass terms arise as a consequence of making a more general ansatz than that in usual Kaluza-Klein dimensional reduction, in which one or more axions are given an additional linear dependence on one of the compactification coordinates. The lower-dimensional theories are nevertheless consistent truncations of eleven-dimensional supergravity. Owing to the fact that the generalised reduction commutes neither with U-duality nor with ordinary dimensional reduction, many different massive theories can result. The simplest examples arise when just a single axion has the additional linear coordinate dependence. We find five inequivalent such theories in D=7, and 71 inequivalent ones in D=4. The massive theories admit no maximally-symmetric vacuum solution, but they do admit (D−2)(D-2)-brane solutions, i.e. domain walls, which preserve half the supersymmetry. We present examples of these solutions, and their oxidations to D=11. Some of the latter are new solutions of D=11 supergravity.Comment: latex, 32 papes, no figures, further comments and references adde

    Anisotropic winds in a Wolf-Rayet binary identify a potential gamma-ray burst progenitor

    Get PDF
    The massive evolved Wolf–Rayet stars sometimes occur in colliding-wind binary systems in which dust plumes are formed as a result of the collision of stellar winds1. These structures are known to encode the parameters of the binary orbit and winds2,3,4. Here we report observations of a previously undiscovered Wolf–Rayet system, 2XMM J160050.7–514245, with a spectroscopically determined wind speed of ~3,400 km s−1. In the thermal infrared, the system is adorned with a prominent ~12″ spiral dust plume, revealed by proper motion studies to be expanding at only ~570 km s−1. As the dust and gas appear to be coeval, these observations are inconsistent with existing models of the dynamics of such colliding-wind systems5,6,7. We propose that this contradiction can be resolved if the system is capable of launching extremely anisotropic winds. Near-critical stellar rotation is known to drive such winds8,9, suggesting that this Wolf–Rayet system may be a Galactic progenitor system for long-duration gamma-ray bursts

    Quotients of AdS_{p+1} x S^q: causally well-behaved spaces and black holes

    Full text link
    Starting from the recent classification of quotients of Freund--Rubin backgrounds in string theory of the type AdS_{p+1} x S^q by one-parameter subgroups of isometries, we investigate the physical interpretation of the associated quotients by discrete cyclic subgroups. We establish which quotients have well-behaved causal structures, and of those containing closed timelike curves, which have interpretations as black holes. We explain the relation to previous investigations of quotients of asymptotically flat spacetimes and plane waves, of black holes in AdS and of Godel-type universes.Comment: 48 pages; v2: minor typos correcte

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb−1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.6−1.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
    • 

    corecore