227 research outputs found
Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff
Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests
New technical approach for the repair of an abdominal wall defect after a transverse rectus abdominis myocutaneous flap: a case report
<p>Abstract</p> <p>Introduction</p> <p>Breast reconstruction with autologous tissue transfer is now a standard operation, but abnormalities of the abdominal wall contour represent a complication which has led surgeons to invent techniques to minimize the morbidity of the donor site.</p> <p>Case presentation</p> <p>We report the case of a woman who had bilateral transverse rectus abdominis myocutaneous flap (TRAM-flap) breast reconstruction. The surgery led to the patient developing an enormous abdominal bulge that caused her disability in terms of abdominal wall and bowel function, pain and contour. In the absence of rectus muscle, the large defect was repaired using a combination of the abdominal wall component separation technique of Ramirez et al and additional mesh augmentation with a lightweight, large-pore polypropylene mesh (Ultrapro<sup>®</sup>).</p> <p>Conclusion</p> <p>The procedure of Ramirez et al is helpful in achieving a tension-free closure of large defects in the anterior abdominal wall. The additional mesh augmentation allows reinforcement of the thinned lateral abdominal wall.</p
The First Sequenced Carnivore Genome Shows Complex Host-Endogenous Retrovirus Relationships
Host-retrovirus interactions influence the genomic landscape and have contributed substantially to mammalian genome evolution. To gain further insights, we analyzed a female boxer (Canis familiaris) genome for complexity and integration pattern of canine endogenous retroviruses (CfERV). Intriguingly, the first such in-depth analysis of a carnivore species identified 407 CfERV proviruses that represent only 0.15% of the dog genome. In comparison, the same detection criteria identified about six times more HERV proviruses in the human genome that has been estimated to contain a total of 8% retroviral DNA including solitary LTRs. These observed differences in man and dog are likely due to different mechanisms to purge, restrict and protect their genomes against retroviruses. A novel group of gammaretrovirus-like CfERV with high similarity to HERV-Fc1 was found to have potential for active retrotransposition and possibly lateral transmissions between dog and human as a result of close interactions during at least 10.000 years. The CfERV integration landscape showed a non-uniform intra- and inter-chromosomal distribution. Like in other species, different densities of ERVs were observed. Some chromosomal regions were essentially devoid of CfERVs whereas other regions had large numbers of integrations in agreement with distinct selective pressures at different loci. Most CfERVs were integrated in antisense orientation within 100 kb from annotated protein-coding genes. This integration pattern provides evidence for selection against CfERVs in sense orientation relative to chromosomal genes. In conclusion, this ERV analysis of the first carnivorous species supports the notion that different mammals interact distinctively with endogenous retroviruses and suggests that retroviral lateral transmissions between dog and human may have occurred
A New Method for Isolation of Interstitial Fluid from Human Solid Tumors Applied to Proteomic Analysis of Ovarian Carcinoma Tissue
Major efforts have been invested in the identification of cancer biomarkers in plasma, but the extraordinary dynamic range in protein composition, and the dilution of disease specific proteins make discovery in plasma challenging. Focus is shifting towards using proximal fluids for biomarker discovery, but methods to verify the isolated sample's origin are missing. We therefore aimed to develop a technique to search for potential candidate proteins in the proximal proteome, i.e. in the tumor interstitial fluid, since the biomarkers are likely to be excreted or derive from the tumor microenvironment. Since tumor interstitial fluid is not readily accessible, we applied a centrifugation method developed in experimental animals and asked whether interstitial fluid from human tissue could be isolated, using ovarian carcinoma as a model. Exposure of extirpated tissue to 106 g enabled tumor fluid isolation. The fluid was verified as interstitial by an isolated fluid:plasma ratio not significantly different from 1.0 for both creatinine and Na+, two substances predominantly present in interstitial fluid. The isolated fluid had a colloid osmotic pressure 79% of that in plasma, suggesting that there was some sieving of proteins at the capillary wall. Using a proteomic approach we detected 769 proteins in the isolated interstitial fluid, sixfold higher than in patient plasma. We conclude that the isolated fluid represents undiluted interstitial fluid and thus a subproteome with high concentration of locally secreted proteins that may be detected in plasma for diagnostic, therapeutic and prognostic monitoring by targeted methods
Individual Facial Coloration in Male Eulemur fulvus rufus: A Condition-dependent Ornament?
Researchers studying individual variation in conspicuous skin coloration in primates have suggested that color indicates male quality. Although primate fur color can also be flamboyant, the potential condition dependence and thus signaling function of fur remains poorly studied. We studied sources of variation in sexually dichromatic facial hair coloration in red-fronted lemurs (Eulemur fulvus rufus). We collected data on 13 adult males in Kirindy Forest, Madagascar, during two study periods in 2006 and 2007, to determine whether variation in facial hair coloration correlates with male age, rank, androgen status, and reproductive success. We quantified facial hair coloration via standardized digital photographs of each male, assessed androgen status using fecal hormone measurements, and obtained data on reproductive success through genetic paternity analyses. Male facial hair coloration showed high individual variation, and baseline coloration was related to individual androgen status but not to any other parameter tested. Color did not reflect rapid androgen changes during the mating season. However, pronounced long-term changes in androgen levels between years were accompanied by changes in facial hair coloration. Our data suggest that facial hair coloration in red-fronted lemur males is under proximate control of androgens and may provide some information about male quality, but it does not correlate with dominance rank or male reproductive success
Interstitial fluid: the overlooked component of the tumor microenvironment?
Background: The interstitium, situated between the blood and lymph vessels and the cells, consists of a solid or matrix phase and a fluid phase, together constituting the tissue microenvironment. Here we focus on the interstitial fluid phase of tumors, i.e., the fluid bathing the tumor and stromal cells. Novel knowledge on this compartment may provide important insight into how tumors develop and how they respond to therapy. Results: We discuss available techniques for interstitial fluid isolation and implications of recent findings with respect to transcapillary fluid balance and uptake of macromolecular therapeutic agents. By the development of new methods it is emerging that local gradients exist in signaling substances from neoplastic tissue to plasma. Such gradients may provide new insight into the biology of tumors and mechanistic aspects linked to therapy. The emergence of sensitive proteomic technologies has made the interstitial fluid compartment in general and that of tumors in particular a highly valuable source for tissue-specific proteins that may serve as biomarker candidates. Potential biomarkers will appear locally at high concentrations in the tissue of interest and will eventually appear in the plasma, where they are diluted. Conclusions: Access to fluid that reliably reflects the local microenvironment enables us to identify substances that can be used in early detection and monitoring of disease
The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor
Sodium/proton exchangers (NHX) are key players in the plant response to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in the tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in sodium ions being removed from the cytosol into the vacuole or extracellular space. The expression of most plant NHX genes is modulated by exposure of the organisms to salt stress or water stress. We explored the regulation of the vacuolar NHX1 gene from the salt-tolerant sugar beet plant (BvNHX1) using Arabidopsis plants transformed with an array of constructs of BvHNX1::GUS, and the expression patterns were characterized using histological and quantitative assays. The 5′ UTR of BvNHX1, including its intron, does not modulate the activity of the promoter. Serial deletions show that a 337 bp promoter fragment sufficed for driving activity that indistinguishable from that of the full-length (2,464 bp) promoter. Mutating four putative cis-acting elements within the 337 bp promoter fragment revealed that MYB transcription factor(s) are involved in the activation of the expression of BvNHX1 upon exposure to salt and water stresses. Gel mobility shift assay confirmed that the WT but not the mutated MYB binding site is bound by nuclear protein extracted from salt-stressed Betavulgaris leaves
A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis
Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general
The Arabidopsis thaliana F-Box Protein FBL17 Is Essential for Progression through the Second Mitosis during Pollen Development
In fungi and metazoans, the SCF-type Ubiquitin protein ligases (E3s) play a critical role in cell cycle regulation by degrading negative regulators, such as cell cycle-dependent kinase inhibitors (CKIs) at the G1-to-S-phase checkpoint. Here we report that FBL17, an Arabidopsis thaliana F-box protein, is involved in cell cycle regulation during male gametogenesis. FBL17 expression is strongly enhanced in plants co-expressing E2Fa and DPa, transcription factors that promote S-phase entry. FBL17 loss-of-function mutants fail to undergo pollen mitosis II, which generates the two sperm cells in mature A. thaliana pollen. Nonetheless, the single sperm cell-like cell in fbl17 mutants is functional but will exclusively fertilize the egg cell of the female gametophyte, giving rise to an embryo that will later abort, most likely due to the lack of functional endosperm. Seed abortion can, however, be overcome by mutations in FIE, a component of the Polycomb group complex, overall resembling loss-of-function mutations in the A. thaliana cyclin-dependent kinase CDKA;1. Finally we identified ASK11, as an SKP1-like partner protein of FBL17 and discuss a possible mechanism how SCFFBL17 may regulate cell division during male gametogenesis
- …