188 research outputs found

    A piperidinium salt stabilizes efficient metal-halide perovskite solar cells

    Get PDF
    Longevity has been a long-standing concern for hybrid perovskite photovoltaics. We demonstrate high-resilience positive-intrinsic-negative perovskite solar cells by incorporating a piperidinium-based ionic compound into the formamidinium-cesium lead-trihalide perovskite absorber. With the bandgap tuned to be well suited for perovskite-on-silicon tandem cells, this piperidinium additive enhances the open-circuit voltage and cell efficiency. This additive also retards compositional segregation into impurity phases and pinhole formation in the perovskite absorber layer during aggressive aging. Under full-spectrum simulated sunlight in ambient atmosphere, our unencapsulated and encapsulated cells retain 80 and 95% of their peak and post-burn-in efficiencies for 1010 and 1200 hours at 60° and 85°C, respectively. Our analysis reveals detailed degradation routes that contribute to the failure of aged cells

    A mixed methods study on evaluating the performance of a multi-strategy national health program to reduce maternal and child health disparities in Haryana, India

    Get PDF
    Background: A multi pronged community based strategy, known as National Rural Health Mission (NRHM), was implemented from 2005-06 to 2012-13 in India to curtail maternal and child health (MCH) disparities between poor and rich, rural and urban areas, and boys and girls,. This study aimed to determine the degree to which MCH plans of NRHM implemented, and resulted in improving the MCH outcomes and reducing the inequalities. Methods: An explanatory sequential mixed methods study was conducted, first to assess the degree of implementation of MCH plans by estimating the budget utilization rates of each MCH plan, and the effectiveness of these plans by comparing demographic health surveys data conducted post (2012-13), during (2007-08) and pre- (2002-04) NRHM implementation period, in the quantitative study. Then, perceptions and beliefs of stakeholders regarding extent and effectiveness of NRHM in Haryana were explored in the qualitative study during 2013. A logistic regression analysis was done for quantitative data, and inductive applied thematic analysis for qualitative data. The findings of the quantitative and qualitative parts of study were mixed at the interpretation level. Results: The MCH plans, like free ambulance service, availability of free drugs and logistics, accredited social health activists were fully implemented according to the budget spent on implementing these activities in Haryana. This was also validated by qualitative study. Availability of free medicines and treatment in the public health facilities had benefitted the poor patients the most. Accredited Social Health Activists scheme was also the most appreciated scheme that had increased the institutional delivery rates. There was acute shortage of human resources in-spite of full utilization of funds allocated for this plan. The results of the qualitative study validated the findings of quantitative study of significant (p < 0.05) improvement in MCH indicators and reduction in MCH disparities between higher and lower socioeconomic groups, and rural and urban areas. Conclusions: MCH plans of NRHM might have succeeded in improving the MCH outcomes and reducing the geographical and socioeconomic MCH inequalities by successfully implementing the schemes like accredited social health activists, free ambulance services, free treatment and medicines in hospitals for the poor and in rural areas

    Characterisation of different polymorphs of tris(8-hydroxyquinolinato)aluminium(III) using solid-state NMR and DFT calculations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organic light emitting devices (OLED) are becoming important and characterisation of them, in terms of structure, charge distribution, and intermolecular interactions, is important. Tris(8-hydroxyquinolinato)-aluminium(III), known as Alq<sub>3</sub>, an organomettalic complex has become a reference material of great importance in OLED. It is important to elucidate the structural details of Alq<sub>3 </sub>in its various isomeric and solvated forms. Solid-state nuclear magnetic resonance (NMR) is a useful tool for this which can also complement the information obtained with X-ray diffraction studies.</p> <p>Results</p> <p>We report here <sup>27</sup>Al one-dimensional (1D) and two-dimensional (2D) multiple-quantum magic-angle spinning (MQMAS) NMR studies of the meridional (<it>α</it>-phase) and the facial (<it>Ύ</it>-phase) isomeric forms of Alq<sub>3</sub>. Quadrupolar parameters are estimated from the 1D spectra under MAS and anisotropic slices of the 2D spectra and also calculated using DFT (density functional theory) quantum-chemical calculations. We have also studied solvated phase of Alq<sub>3 </sub>containing ethanol in its lattice. We show that both the XRD patterns and the quadrupolar parameters of the solvated phase are different from both the <it>α</it>-phase and the <it>Ύ</it>-phase, although the fluorescence emission shows no substantial difference between the <it>α</it>-phase and the solvated phase. Moreover, we have shown that after the removal of ethanol from the matrix the solvated Alq<sub>3 </sub>has similar XRD patterns and quadrupolar parameters to that of the <it>α</it>-phase.</p> <p>Conclusion</p> <p>The 2D MQMAS experiments have shown that all the different modifications of Alq<sub>3 </sub>have <sup>27</sup>Al in single unique crystallographic site. The quadrupolar parameters predicted using the DFT calculation under the isodensity polarisable continuum model resemble closely the experimentally obtained values. The solvated phase of Alq<sub>3 </sub>containing ethanol has structural difference from the <it>α</it>-phase of Alq<sub>3 </sub>(containing meridional isomer) from the solid-state NMR studies. Solid-state NMR can hence be used as an effective complementary tool to XRD for characterisation and structural elucidation.</p

    Exploring Chromophore-Binding Pocket: High-Resolution Solid-State 1H–13C Interfacial Correlation NMR Spectra with Windowed PMLG Scheme

    Get PDF
    High-resolution two-dimensional (2D) 1H–13C heteronuclear correlation spectra are recorded for selective observation of interfacial 3–5.5 Å contacts of the uniformly 13C-labeled phycocyanobilin (PCB) chromophore with its unlabeled binding pocket. The experiment is based on a medium- and long-distance heteronuclear correlation (MELODI–HETCOR) method. For improving 1H spectral resolution, a windowed phase-modulated Lee–Goldburg (wPMLG) decoupling scheme is applied during the t1 evolution period. Our approach allows for identification of chromophore–protein interactions, in particular for elucidation of the hydrogen-bonding networks and charge distributions within the chromophore-binding pocket. The resulting pulse sequence is tested on the cyanobacterial (Cph1) phytochrome sensory module (residues 1–514, Cph1Δ2) containing uniformly 13C- and 15N-labeled PCB chromophore (u-[13C,15N]-PCB-Cph1Δ2) at 17.6 T

    Impact of a multi-strategy community intervention to reduce maternal and child health inequalities in India : A qualitative study in Haryana

    Get PDF
    A multi-strategy community intervention, known as National Rural Health Mission (NRHM), was implemented in India from 2005 to 2012. By improving the availability of and access to better-quality healthcare, the aim was to reduce maternal and child health (MCH) inequalities. This study was planned to explore the perceptions and beliefs of stakeholders about extent of implementation and effectiveness of NRHM's health sector plans in improving MCH status and reducing inequalities. A total of 33 in-depth interviews (n = 33) with program managers, community representatives, mothers and 8 focus group discussions (n = 42) with health service providers were conducted from September to December 2013, in Haryana, post NRHM. Using NVivo software (version 9), an inductive applied thematic analysis was done based upon grounded theory, program theory of change and a framework approach. Almost all the participants reported that there was an improvement in overall health infrastructure through an increased availability of accredited social health activists, free ambulance services, and free treatment facilities in rural areas. This had increased the demand and utilization of MCH services, especially for those related to institutional delivery, even by the poor families. Service providers felt that acute shortage of human resources was a major health system level barrier. District-specific individual, community, and socio-political level barriers were also observed. Overall program managers, service providers and community representatives believed that NRHM had a role in improving MCH outcomes and in reduction of geographical and socioeconomic inequalities, through improvement in accessibility, availability and affordability of the MCH services in the rural areas and for the poor. Any reduction in gender-based inequalities, however, was linked to the adoption of small family sizes and an increase in educational levels

    Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of τ Leptons in pp collisions at sqrt[s]=13  TeV

    Get PDF
    Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the τ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event, if any. The analysis is performed using proton-proton collision data collected with the CMS detector at the LHC at a center-of-mass energy of 13  TeV and corresponding to an integrated luminosity of 138  fb^{-1}. These are the first differential measurements of the Higgs boson cross section in the final state of two τ leptons. In final states with a large jet multiplicity or with a Lorentz-boosted Higgs boson, these measurements constitute a significant improvement over measurements performed in other final states

    Observation of triple J/ψ meson production in proton-proton collisions

    Get PDF
    Data availability: Tabulated results are provided in the HEPData record for this analysis71. Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in CMS data preservation, re-use and open access policy.Code availability: The CMS core software is publically available at https://github.com/cms-sw/cmssw.Copyright . Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ψ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ψ mesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be 272+141−104(stat)±17(syst)fb, and compared it to theoretical expectations for triple-J/ψ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process.SCOAP3.Change history: 27 February 2023A Correction to this paper has been published: https://doi.org/10.1038/s41567-023-01992-

    A new calibration method for charm jet identification validated with proton-proton collision events at √s = 13 TeV

    Get PDF
    ArXiv ePrint: 2111.03027Copyright © 2022 CERN for the benefit of the CMS collaboration. Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb-1 at  √s = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate various mismodelling conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses.SCOAP
    • 

    corecore