357 research outputs found

    Simulational study of anomalous tracer diffusion in hydrogels

    Full text link
    In this article, we analyze different factors that affect the diffusion behavior of small tracer particles (as they are used e.g.in fluorescence correlation spectroscopy (FCS)) in the polymer network of a hydrogel and perform simulations of various simplified models. We observe, that under certain circumstances the attraction of a tracer particle to the polymer network strands might cause subdiffusive behavior on intermediate time scales. In theory, this behavior could be employed to examine the network structure and swelling behavior of weakly crosslinked hydrogels with the help of FCS.Comment: 11 pages, 11 figure

    Skeletal muscle contraction. The thorough definition of the contractile event requires both load acceleration and load mass to be known

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The scope of this work is to show that the correct and complete definition of the system of muscle contraction requires the knowledge of both the mass and the acceleration of the load.</p> <p>Results</p> <p>The aim is achieved by making use of a model of muscle contraction that operates into two phases. The first phase considers the effects of the power stroke in the absence of any hindrance. In the second phase viscous hindrance is introduced to match the experimental speed and yield of the contraction. It is shown that, at constant force of the load, changing load acceleration changes the time course of the pre-steady state of myofibril contraction. The decrease of the acceleration of the load from 9.8 m.s<sup>-2 </sup>to 1 m.s<sup>-2 </sup>increases the time length of the pre-steady state of the contraction from a few microseconds to many hundreds of microseconds and decreases the stiffness of the active fibre.</p> <p>Conclusions</p> <p>We urge that in the study of muscle contraction both the mass and the acceleration of the load are specified.</p

    A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th17 suppression

    Get PDF
    Tannerella forsythia is a pathogen implicated in periodontitis, an inflammatory disease of the tooth-supporting tissues often leading to tooth loss. This key periodontal pathogen is decorated with a unique glycan core O-glycosidically linked to the bacterium's proteinaceous surface (S)-layer lattice and other glycoproteins. Herein, we show that the terminal motif of this glycan core acts to modulate dendritic cell effector functions to suppress T-helper (Th)17 responses. In contrast to the wild-type bacterial strain, infection with a mutant strain lacking the complete S-layer glycan core induced robust Th17 and reduced periodontal bone loss in mice. Our findings demonstrate that surface glycosylation of this pathogen may act to ensure its persistence in the host likely through suppression of Th17 responses. In addition, our data suggest that the bacterium then induces the Toll-like receptor 2–Th2 inflammatory axis that has previously been shown to cause bone destruction. Our study provides a biological basis for pathogenesis and opens opportunities in exploiting bacterial glycans as therapeutic targets against periodontitis and a range of other infectious diseases

    The role of a probiotics mixture in the treatment of childhood constipation: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inconsistent data exist about the efficacy of probiotics in the treatment of constipation. Several studies in adults with constipation showed positive effects of probiotics on constipation. Inconsistent data exist regarding the effect of a single probiotic strain in constipated children. The aim of this pilot study was to determine the effect of a mixture of probiotics containing bifidobacteria and lactobacilli in the treatment of childhood constipation.</p> <p>Methods</p> <p>Children aged 4–16 years with constipation as defined by the Rome III criteria were eligible for the study. During a 4 week period, children received a daily mix of 4 × 10<sup>9 </sup>colony forming units of a probiotic mixture (<it>Ecologic</it><sup>®</sup><it>Relief</it>) containing Bifidobacteria (B.) bifidum, B. infantis, B. longum, Lactobacilli (L.) casei, L. plantarum and L. rhamnosus. Primary outcome measures were frequency of bowel movements (BMs) per week and stool consistency. Secondary outcome measures were number of faecal incontinence episodes per week, abdominal pain and side effects.</p> <p>Results</p> <p>Twenty children, 50% male, median age 8 (range 4–16) were included.</p> <p>The frequency of BMs per week increased from 2.0 (1.0–5.0) to 4.2 (0.0–16.0) in week 2 (p = 0.10) and 3.8 (2.1–7.0) in week 4 (p = 0.13). In 12 children presenting with <3 BMs/week, BMs per week increased significantly from 1.0 (0.0–2.0) to 3.0 (0.0–7.0) in week 2 (p = 0.01) and 3.0 (0.0–10.0) in week 4 (p = 0.01). The stool consistency was reported as hard in 7 children at baseline, in 4 children at week 2 (p = 0.23) and in 6 children after 4 weeks of treatment (p = 1.00). A significant decrease in number of faecal incontinence episodes per week was found in the entire group: 4.0 (0.0–35.0) to 1.5 (0.0–14.0) in week 2 (p = 0.01) and 0.3 (0.0–7.0) in week 4 (p = 0.001). The presence of abdominal pain decreased significantly from 45% to 25% in week 2 (p = 0.04) and 20% at week 4 (p = 0.006). No side effects were reported.</p> <p>Conclusion</p> <p>This pilot study shows that a mixture of probiotics, has positive effects on symptoms of constipation. To confirm these findings, a large randomised placebo controlled trial is required.</p

    Stability of Metabolic Correlations under Changing Environmental Conditions in Escherichia coli – A Systems Approach

    Get PDF
    Background: Biological systems adapt to changing environments by reorganizing their cellular and physiological program with metabolites representing one important response level. Different stresses lead to both conserved and specific responses on the metabolite level which should be reflected in the underlying metabolic network. Methodology/Principal Findings: Starting from experimental data obtained by a GC-MS based high-throughput metabolic profiling technology we here develop an approach that: (1) extracts network representations from metabolic condition-dependent data by using pairwise correlations, (2) determines the sets of stable and condition-dependent correlations based on a combination of statistical significance and homogeneity tests, and (3) can identify metabolites related to the stress response, which goes beyond simple observations about the changes of metabolic concentrations. The approach was tested with Escherichia coli as a model organism observed under four different environmental stress conditions (cold stress, heat stress, oxidative stress, lactose diauxie) and control unperturbed conditions. By constructing the stable network component, which displays a scale free topology and small-world characteristics, we demonstrated that: (1) metabolite hubs in this reconstructed correlation networks are significantly enriched for those contained in biochemical networks such as EcoCyc, (2) particular components of the stable network are enriched for functionally related biochemical pathways, and (3) independently of the response scale, based on their importance in the reorganization of the correlation network a set of metabolites can be identified which represent hypothetical candidates for adjusting to a stress-specific response. Conclusions/Significance: Network-based tools allowed the identification of stress-dependent and general metabolic correlation networks. This correlation-network-based approach does not rely on major changes in concentration to identify metabolites important for stress adaptation, but rather on the changes in network properties with respect to metabolites. This should represent a useful complementary technique in addition to more classical approaches

    Peptidoglycan-Modifying Enzyme Pgp1 Is Required for Helical Cell Shape and Pathogenicity Traits in Campylobacter jejuni

    Get PDF
    The impact of bacterial morphology on virulence and transmission attributes of pathogens is poorly understood. The prevalent enteric pathogen Campylobacter jejuni displays a helical shape postulated as important for colonization and host interactions. However, this had not previously been demonstrated experimentally. C. jejuni is thus a good organism for exploring the role of factors modulating helical morphology on pathogenesis. We identified an uncharacterized gene, designated pgp1 (peptidoglycan peptidase 1), in a calcofluor white-based screen to explore cell envelope properties important for C. jejuni virulence and stress survival. Bioinformatics showed that Pgp1 is conserved primarily in curved and helical bacteria. Deletion of pgp1 resulted in a striking, rod-shaped morphology, making pgp1 the first C. jejuni gene shown to be involved in maintenance of C. jejuni cell shape. Pgp1 contributes to key pathogenic and cell envelope phenotypes. In comparison to wild type, the rod-shaped pgp1 mutant was deficient in chick colonization by over three orders of magnitude and elicited enhanced secretion of the chemokine IL-8 in epithelial cell infections. Both the pgp1 mutant and a pgp1 overexpressing strain – which similarly produced straight or kinked cells – exhibited biofilm and motility defects. Detailed peptidoglycan analyses via HPLC and mass spectrometry, as well as Pgp1 enzyme assays, confirmed Pgp1 as a novel peptidoglycan DL-carboxypeptidase cleaving monomeric tripeptides to dipeptides. Peptidoglycan from the pgp1 mutant activated the host cell receptor Nod1 to a greater extent than did that of wild type. This work provides the first link between a C. jejuni gene and morphology, peptidoglycan biosynthesis, and key host- and transmission-related characteristics

    OGLE-2017-BLG-0406: Spitzer microlens parallax reveals Saturn-mass planet orbiting M-dwarf host in the inner galactic disk

    Get PDF
    Funding: Work by Y.H. was supported by JSPS KAKENHI Grant Number 17J02146. DPB, AB, and CR were supported by NASA through grant NASA-80NSSC18K0274. Work by N.K. is supported by JSPS KAKENHI Grant Number JP18J00897. Work by AG was supported by AST-1516842 from the US NSF and by JPL grant 1500811. AG received support from the European Research Council under the European Unions Seventh Framework Programme (FP 7) ERC Grant Agreement n.[321035]. Work by C.H. was supported by the grants of the National Research Foundation of Korea (2017R1A4A1015178 and 2019R1A2C2085965). YT acknowledges the support of DFG priority program SPP 1992 ”Exploring the Diversity of Extrasolar Planets” (WA 1047/11-1).We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10-4 from the light-curve modeling. The ground-only and Spitzer-"only" data each provide very strong one-dimensional (1-D) constraints on the 2-D microlens parallax vector πE. When combined, these yield a precise measurement of πE, and so of the masses of the host Mhost = 0.56 ± 0.07 M⊙ and planet Mplanet = 0.41 ± 0.05 MJup. The system lies at a distance DL = 5.2 ± 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a⊥ = 3.5 ± 0.3 au, i.e., just over twice the snow line. The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10σ error.PostprintPeer reviewe

    Faint-source-star planetary microlensing: the discovery of the cold gas-giant planet OGLE-2014-BLG-0676Lb

    Get PDF
    We report the discovery of a planet – OGLE-2014-BLG-0676Lb– via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNET/Las Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and μ-FUN. All analyses of the light-curve data favour a lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 ± 0.13) × 10−3. Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09+1.02 −1.12 MJ planet orbiting a 0.62+0.20 −0.22 M host star at a deprojected orbital separation of 4.40+2.16 −1.46 au. The distance to the lens system is 2.22+0.96 −0.83 kpc. Planet OGLE- 2014-BLG-0676Lb provides additional data to the growing number of cool planets discovered using gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation

    Faithful chaperones

    Get PDF
    This review describes the properties of some rare eukaryotic chaperones that each assist in the folding of only one target protein. In particular, we describe (1) the tubulin cofactors, (2) p47, which assists in the folding of collagen, (3) α-hemoglobin stabilizing protein (AHSP), (4) the adenovirus L4-100 K protein, which is a chaperone of the major structural viral protein, hexon, and (5) HYPK, the huntingtin-interacting protein. These various-sized proteins (102–1,190 amino acids long) are all involved in the folding of oligomeric polypeptides but are otherwise functionally unique, as they each assist only one particular client. This raises a question regarding the biosynthetic cost of the high-level production of such chaperones. As the clients of faithful chaperones are all abundant proteins that are essential cellular or viral components, it is conceivable that this necessary metabolic expenditure withstood evolutionary pressure to minimize biosynthetic costs. Nevertheless, the complexity of the folding pathways in which these chaperones are involved results in error-prone processes. Several human disorders associated with these chaperones are discussed
    corecore