36 research outputs found

    The Antimicrobial Peptide Histatin-5 Causes a Spatially Restricted Disruption on the Candida albicans Surface, Allowing Rapid Entry of the Peptide into the Cytoplasm

    Get PDF
    Antimicrobial peptides play an important role in host defense against microbial pathogens. Their high cationic charge and strong amphipathic structure allow them to bind to the anionic microbial cell membrane and disrupt the membrane bilayer by forming pores or channels. In contrast to the classical pore-forming peptides, studies on histatin-5 (Hst-5) have suggested that the peptide is transported into the cytoplasm of Candida albicans in a non-lytic manner, and cytoplasmic Hst-5 exerts its candicidal activities on various intracellular targets, consistent with its weak amphipathic structure. To understand how Hst-5 is internalized, we investigated the localization of FITC-conjugated Hst-5. We find that Hst-5 is internalized into the vacuole through receptor-mediated endocytosis at low extracellular Hst-5 concentrations, whereas under higher physiological concentrations, Hst-5 is translocated into the cytoplasm through a mechanism that requires a high cationic charge on Hst-5. At intermediate concentrations, two cell populations with distinct Hst-5 localizations were observed. By cell sorting, we show that cells with vacuolar localization of Hst-5 survived, while none of the cells with cytoplasmic Hst-5 formed colonies. Surprisingly, extracellular Hst-5, upon cell surface binding, induces a perturbation on the cell surface, as visualized by an immediate and rapid internalization of Hst-5 and propidium iodide or rhodamine B into the cytoplasm from the site using time-lapse microscopy, and a concurrent rapid expansion of the vacuole. Thus, the formation of a spatially restricted site in the plasma membrane causes the initial injury to C. albicans and offers a mechanism for its internalization into the cytoplasm. Our study suggests that, unlike classical channel-forming antimicrobial peptides, action of Hst-5 requires an energized membrane and causes localized disruptions on the plasma membrane of the yeast. This mechanism of cell membrane disruption may provide species-specific killing with minimal damage to microflora and the host and may be used by many other antimicrobial peptides

    Revisiting the association between candidal infection and carcinoma, particularly oral squamous cell carcinoma

    Get PDF
    Background: Tobacco and alcohol are risk factors associated with cancer of the upper aerodigestive tract, but increasingly the role of infection and chronic inflammation is recognized as being significant in cancer development. Bacteria, particularly Helicobacter pylori, and viruses such as members of the human papilloma virus family and hepatitis B and C are strongly implicated as etiological factors in certain cancers. There is less evidence for an association between fungi and cancer, although it has been recognized for many years that white patches on the oral mucosa, which are infected with Candida, have a greater likelihood of undergoing malignant transformation than those that are not infected. Objective: This article reviews the association between the development of oral squamous cell carcinoma in potentially malignant oral lesions with chronic candidal infection and describes mechanisms that may be involved in Candida-associated malignant transformation

    Mapping recent information behavior research: an analysis of co-authorship and cocitation networks

    Get PDF
    There has been an increase in research published on information behavior in recent years, and this has been accompanied by an increase in its diversity and interaction with other fields, particularly information retrieval (HR). The aims of this study are to determine which researchers have contributed to producing the current body of knowledge on this subject, and to describe its intellectual basis. A bibliometric and network analysis was applied to authorship and co-authorship as well as citation and co-citation. According to these analyses, there is a small number of authors who can be considered to be the most productive and who publish regularly, and a large number of transient ones. Other findings reveal a marked predominance of theoretical works, some examples of qualitative methodology that originate in other areas of social science, and a high incidence of research focused on the user interaction with information retrieval systems and the information behavior of doctors

    Multimodal population brain imaging in the UK Biobank prospective epidemiological study

    Get PDF
    Medical imaging has enormous potential for early disease prediction, but is impeded by the difficulty and expense of acquiring data sets before symptom onset. UK Biobank aims to address this problem directly by acquiring high-quality, consistently acquired imaging data from 100,000 predominantly healthy participants, with health outcomes being tracked over the coming decades. The brain imaging includes structural, diffusion and functional modalities. Along with body and cardiac imaging, genetics, lifestyle measures, biological phenotyping and health records, this imaging is expected to enable discovery of imaging markers of a broad range of diseases at their earliest stages, as well as provide unique insight into disease mechanisms. We describe UK Biobank brain imaging and present results derived from the first 5,000 participants' data release. Although this covers just 5% of the ultimate cohort, it has already yielded a rich range of associations between brain imaging and other measures collected by UK Biobank

    Global Analysis of the Evolution and Mechanism of Echinocandin Resistance in Candida glabrata

    Get PDF
    The evolution of drug resistance has a profound impact on human health. Candida glabrata is a leading human fungal pathogen that can rapidly evolve resistance to echinocandins, which target cell wall biosynthesis and are front-line therapeutics for Candida infections. Here, we provide the first global analysis of mutations accompanying the evolution of fungal drug resistance in a human host utilizing a series of C. glabrata isolates that evolved echinocandin resistance in a patient treated with the echinocandin caspofungin for recurring bloodstream candidemia. Whole genome sequencing identified a mutation in the drug target, FKS2, accompanying a major resistance increase, and 8 additional non-synonymous mutations. The FKS2-T1987C mutation was sufficient for echinocandin resistance, and associated with a fitness cost that was mitigated with further evolution, observed in vitro and in a murine model of systemic candidemia. A CDC6-A511G(K171E) mutation acquired before FKS2-T1987C(S663P), conferred a small resistance increase. Elevated dosage of CDC55, which acquired a C463T(P155S) mutation after FKS2-T1987C(S663P), ameliorated fitness. To discover strategies to abrogate echinocandin resistance, we focused on the molecular chaperone Hsp90 and downstream effector calcineurin. Genetic or pharmacological compromise of Hsp90 or calcineurin function reduced basal tolerance and resistance. Hsp90 and calcineurin were required for caspofungin-dependent FKS2 induction, providing a mechanism governing echinocandin resistance. A mitochondrial respiration-defective petite mutant in the series revealed that the petite phenotype does not confer echinocandin resistance, but renders strains refractory to synergy between echinocandins and Hsp90 or calcineurin inhibitors. The kidneys of mice infected with the petite mutant were sterile, while those infected with the HSP90-repressible strain had reduced fungal burden. We provide the first global view of mutations accompanying the evolution of fungal drug resistance in a human host, implicate the premier compensatory mutation mitigating the cost of echinocandin resistance, and suggest a new mechanism of echinocandin resistance with broad therapeutic potential
    corecore