1,321 research outputs found

    Study of time lags in HETE-2 Gamma-Ray Bursts with redshift: search for astrophysical effects and Quantum Gravity signature

    Full text link
    The study of time lags between spikes in Gamma-Ray Bursts light curves in different energy bands as a function of redshift may lead to the detection of effects due to Quantum Gravity. We present an analysis of 15 Gamma-Ray Bursts with measured redshift, detected by the HETE-2 mission between 2001 and 2006 in order to measure time lags related to astrophysical effects and search for Quantum Gravity signature in the framework of an extra-dimension string model. The use of photon-tagged data allows us to consider various energy ranges. Systematic effects due to selection and cuts are evaluated. No significant Quantum Gravity effect is detected from the study of the maxima of the light curves and a lower limit at 95% Confidence Level on the Quantum Gravity scale parameter of 3.2x10**15 GeV is set.Comment: 4 pages, 5 figures. v3: Error corrected in Eq. 1. Results updated. Proceedings of the 30th ICRC, Merida, Mexico (2007

    Ephemeral properties and the illusion of microscopic particles

    Full text link
    Founding our analysis on the Geneva-Brussels approach to quantum mechanics, we use conventional macroscopic objects as guiding examples to clarify the content of two important results of the beginning of twentieth century: Einstein-Podolsky-Rosen's reality criterion and Heisenberg's uncertainty principle. We then use them in combination to show that our widespread belief in the existence of microscopic particles is only the result of a cognitive illusion, as microscopic particles are not particles, but are instead the ephemeral spatial and local manifestations of non-spatial and non-local entities

    Schwinger Algebra for Quaternionic Quantum Mechanics

    Get PDF
    It is shown that the measurement algebra of Schwinger, a characterization of the properties of Pauli measurements of the first and second kinds, forming the foundation of his formulation of quantum mechanics over the complex field, has a quaternionic generalization. In this quaternionic measurement algebra some of the notions of quaternionic quantum mechanics are clarified. The conditions imposed on the form of the corresponding quantum field theory are studied, and the quantum fields are constructed. It is shown that the resulting quantum fields coincide with the fermion or boson annihilation-creation operators obtained by Razon and Horwitz in the limit in which the number of particles in physical states NN \to \infty.Comment: 20 pages, Plain Te

    Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope

    Get PDF
    We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector, called CELESTE, used first 40, then 53 heliostats of the former solar facility "Themis" in the French Pyrenees to collect Cherenkov light generated in atmospheric particle cascades. The signal from Mrk 421 is often strong. We compare its flux with previously published multi-wavelength studies and infer that we are straddling the high energy peak of the spectral energy distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab flux near 100 GeV. The data analysis and understanding of systematic biases have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 -- corrected error in author lis

    Foundations of a spacetime path formalism for relativistic quantum mechanics

    Full text link
    Quantum field theory is the traditional solution to the problems inherent in melding quantum mechanics with special relativity. However, it has also long been known that an alternative first-quantized formulation can be given for relativistic quantum mechanics, based on the parametrized paths of particles in spacetime. Because time is treated similarly to the three space coordinates, rather than as an evolution parameter, such a spacetime approach has proved particularly useful in the study of quantum gravity and cosmology. This paper shows how a spacetime path formalism can be considered to arise naturally from the fundamental principles of the Born probability rule, superposition, and Poincar\'e invariance. The resulting formalism can be seen as a foundation for a number of previous parametrized approaches in the literature, relating, in particular, "off-shell" theories to traditional on-shell quantum field theory. It reproduces the results of perturbative quantum field theory for free and interacting particles, but provides intriguing possibilities for a natural program for regularization and renormalization. Further, an important consequence of the formalism is that a clear probabilistic interpretation can be maintained throughout, with a natural reduction to non-relativistic quantum mechanics.Comment: RevTex 4, 42 pages; V6 is as accepted for publication in the Journal of Mathematical Physics, updated in response to referee comments; V7 includes final editorial correction

    Electropolymerizable 3Dπ-conjugated architectures with ethylenedioxythiophene (EDOT) end-groups as precursors of electroactive conjugated networks

    Get PDF
    Three-dimensional conjugated architectures involving conjugated branches with terminal EDOT groups attached onto a bithiophene core twisted by ca. 90 degrees by steric interactions have been synthesized by Stille coupling reactions. The UV-Vis absorption spectra recorded in solution show complex spectral features that depend on both the size and chemical structure of the main conjugated segment and of the conjugated side chains. Thanks to the fixation of the terminal EDOT groups, these compounds undergo straightforward and complete electropolymerization to produce stable electrode materials. The analysis of the electrochemical and optical properties of the polymers by cyclic voltammetry and spectroelectrochemistry suggests that the electrochemical coupling of the terminal EDOT groups leads to the formation of pi-conjugated networks the electrochemical and optical properties of which can be tuned through the length and chemical composition of the oligomeric conjugated links

    Laser-modified one- and two-photon absorption:Expanding the scope of optical nonlinearity

    Get PDF
    It is shown that conventional one-photon and two-photon absorption processes can be made subject to nonlinear optical control, in each case significantly modifying the efficiency of absorption, through the effect of a secondary, off-resonant stimulus laser beam. The mechanistic origin of these laser-modified absorption processes, in which the stimulus beam emerges unchanged, is traced to higher-order terms in standard perturbation treatments. These normally insignificant terms become unusually prominent when the secondary optical stimulus is moderately intense. Employing a quantum formulation, the effects of the stimulus beam on one-photon and two-photon absorption are analyzed, and calculations are performed to determine the degree of absorption enhancement, and the form of spectral manifestation, under various laser intensities. The implications of differences in selection rules are also considered and exemplified, leading to the identification of dark states that can be populated as a result of laser-modified absorption. Attention is also drawn to the possibility of quantum nondemolition measurements, based on such a form of optical nonlinearity

    Information-theoretic principle entails orthomodularity of a lattice

    Full text link
    Quantum logical axiomatic systems for quantum theory usually include a postulate that a lattice under consideration is orthomodular. We propose a derivation of orthomodularity from an information-theoretic axiom. This provides conceptual clarity and removes a long-standing puzzle about the meaning of orthomodularity.Comment: Version prior to published, with slight modification

    A Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency

    Get PDF
    The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed
    corecore