473 research outputs found

    Crystal state conformation of three model monomer units for the β-bend ribbon structure

    Get PDF
    The molecular and crystal structures of three compounds, representing the repeating units of the β-bend ribbon (an approximate 310-helix, with an intramolecular hydrogen-bonding donor every two residues), have been determined by x-ray diffraction. They are Boc-Aib-Hib-NHBzl, Z-Aib-Hib-NHBzl, and Z-L-Hyp-Aib-NHMe (Aib, α-aminoisobutyric acid; Bzl, benzyl; Boc, t-butyloxycarbonyl; Hyp, hydroxyproline Hib, α-hydroxyisobutyric acid; Z, benzyloxycarbonyl). The two former compounds are folded in a -bend conformation: type III (III′) for Boc-Aib-Hib-NHBzl, while type II (II′) for the Z analogue. Conversely, the structure of Z-L-Hyp-Aib-NHMe, although not far from a type II β-bend, is partially open

    The metaproteome of the gut microbiota in pediatric patients affected by COVID-19

    Get PDF
    IntroductionThe gut microbiota (GM) play a significant role in the infectivity and severity of COVID-19 infection. However, the available literature primarily focuses on adult patients and it is known that the microbiota undergoes changes throughout the lifespan, with significant alterations occurring during infancy and subsequently stabilizing during adulthood. Moreover, children have exhibited milder symptoms of COVID-19 disease, which has been associated with the abundance of certain protective bacteria. Here, we examine the metaproteome of pediatric patients to uncover the biological mechanisms that underlie this protective effect of the GM.MethodsWe performed nanoliquid chromatography coupled with tandem mass spectrometry on a high resolution analytical platform, resulting in label free quantification of bacterial protein groups (PGs), along with functional annotations via COG and KEGG databases by MetaLab-MAG. Additionally, taxonomic assignment was possible through the use of the lowest common ancestor algorithm provided by Unipept software.ResultsA COVID-19 GM functional dissimilarity respect to healthy subjects was identified by univariate analysis. The alteration in COVID-19 GM function is primarily based on bacterial pathways that predominantly involve metabolic processes, such as those related to tryptophan, butanoate, fatty acid, and bile acid biosynthesis, as well as antibiotic resistance and virulence.DiscussionThese findings highlight the mechanisms by which the pediatric GM could contribute to protection against the more severe manifestations of the disease in children. Uncovering these mechanisms can, therefore, have important implications in the discovery of novel adjuvant therapies for severe COVID-19

    Conformations of peptides containing 1-aminocyclohexanecarboxylic acid (Acc<SUP>6</SUP>). Crystal structures of two model peptides

    Get PDF
    The crystal structures of two peptides containing 1-aminocyclohexanecarboxylic acid (Acc6) are described. Boc-Aib-Acc6-NHMe &#183; H2O adopts a &#946;-turn conformation in the solid state, stabilized by an intramolecular 4 &#8594; 1 hydrogen bond between the Boc CO and methylamide NH groups. The backbone conformational angles (&#966;Aib = - 50.3&#176;, &#968;Aib = - 45.8&#176;; &#966;Acc6 = - 68.4&#176;, &#968;Acc6 = - 15&#176;) lie in between the values expected for ideal Type I or III &#946;-turns. In Boc-Aib-Acc6-OMe, the Aib residue adopts a partially extended conformation (&#966;Aib = - 62.2&#176;, &#968;Aib = 143&#176;) while the Acc6 residue maintains a helical conformation (&#966;Acc6 = 48&#176;, &#968;Acc6= 42.6&#176;). 1H n.m.r. studies in CDCl3 and (CD3)2SO suggest that Boc-Aib-Acc6-NHMe maintains the &#946;-turn conformation in solution

    Modeling house price dynamics with heterogeneous speculators

    Get PDF
    This paper investigates the impact of speculative behavior on house price dynamics. Speculative demand for housing is modeled using a heterogeneous agent approach, whereas ‘real’ demand and housing supply are represented in a standard way. Together, real and speculative forces determine excess demand in each period and house price adjustments. Three alternative models are proposed, capturing in different ways the interplay between fundamental trading rules and extrapolative trading rules, resulting in a 2D, a 3D, and a 4D nonlinear discretetime dynamical system, respectively. While the destabilizing effect of speculative behavior on the model’s steady state is proven in general, the three specific cases illustrate a variety of situations that can bring about endogenous dynamics, with lasting and significant price swings around the ‘fundamental ’ price, as we have seen in many real markets

    Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice

    Get PDF
    The effect of molecule tethering in three-dimensional (3-D) space on bimolecular binding kinetics is rarely addressed and only occasionally incorporated into models of cell motility. The simplest system that can quantitatively determine this effect is the 3-D sarcomere lattice of the striated muscle, where tethered myosin in thick filaments can only bind to a relatively small number of available sites on the actin filament, positioned within a limited range of thermal movement of the myosin head. Here we implement spatially explicit actomyosin interactions into the multiscale Monte Carlo platform MUSICO, specifically defining how geometrical constraints on tethered myosins can modulate state transition rates in the actomyosin cycle. The simulations provide the distribution of myosin bound to sites on actin, ensure conservation of the number of interacting myosins and actin monomers, and most importantly, the departure in behavior of tethered myosin molecules from unconstrained myosin interactions with actin. In addition, MUSICO determines the number of cross-bridges in each actomyosin cycle state, the force and number of attached cross-bridges per myosin filament, the range of cross-bridge forces and accounts for energy consumption. At the macroscopic scale, MUSICO simulations show large differences in predicted force-velocity curves and in the response during early force recovery phase after a step change in length comparing to the two simplest mass action kinetic models. The origin of these differences is rooted in the different fluxes of myosin binding and corresponding instantaneous cross-bridge distributions and quantitatively reflects a major flaw of the mathematical description in all mass action kinetic models. Consequently, this new approach shows that accurate recapitulation of experimental data requires significantly different binding rates, number of actomyosin states, and cross-bridge elasticity than typically used in mass action kinetic models to correctly describe the biochemical reactions of tethered molecules and their interaction energetics
    • …
    corecore