# Crystal State Conformation of Three Model Monomer Units for The $\beta$-Bend Ribbon Structure 

G. VALLE, ${ }^{1}$ R. BARDI, ${ }^{1}$ A. M. PIAZZESI, ${ }^{1}$ M. CRISMA, ${ }^{1}$ C. TONIOLO,' G. CAVICCHIONI, ${ }^{2}$ K. UMA, ${ }^{3}$ and P. BALARAM ${ }^{3, *}$<br>'Biopolymer Research Center, CNR, Department of Organic Chemistry, University of Padova, 35131 Padova, Italy;<br>${ }^{2}$ Department of Pharmaceutical Sciences, University of Ferrara, 44100 Ferrara, Italy; and<br>${ }^{3}$ Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India

## SYNOPSIS

The molecular and crystal structures of three compounds, representing the repeating units of the $\beta$-bend ribbon (an approximate $3_{10}$-helix, with an intramolecular hydrogen-bonding donor every two residues), have been determined by $x$-ray diffraction. They are Boc-Aib-Hib-NHBzl, Z-Aib-Hib-NHBzl, and Z-L-Hyp-Aib-NHMe (Aib, $\alpha$-aminoisobutyric acid; Bzl, benzyl; Boc, $t$-butyloxycarbonyl; Hyp, hydroxyproline Hib, $\alpha$-hydroxyisobutyric acid; Z, benzyloxycarbonyl). The two former compounds are folded in a $\beta$-bend conformation: type III (III') for Boc-Aib-Hib-NHBzl, while type II (II') for the Z analogue. Conversely, the structure of Z-L-Hyp-Aib-NHMe, although not far from a type II $\beta$-bend, is partially open.

## INTRODUCTION

The incorporation of $\alpha$-aminoisobutyric acid (Aib) residues into peptides stabilizes $\beta$-turn conformations. ${ }^{1-5}$ A crystal structure determination of a 16 residue peptide has provided a clear characterization of a " $\beta$-bend ribbon," which is a $3_{10}$-helical conformation interrupted by Pro residues at alternate positions. ${ }^{6}$ Such structures have been earlier suggested for (Aib-Pro) ${ }_{n}$ sequences on the basis of $n m r$ data ${ }^{7}$ and conformational energy calculations. ${ }^{8}$ We have undertaken further analysis of sequences of the type (Aib-X) ${ }_{n}$, using specifically chosen X residues for interrupting the backbone hydrogen-bonding pat-

[^0]tern. The N -alkylated amino acids Pro, Hyp, and MeAib, and the hydroxyacid $\alpha$-hydroxyisobutyric acid (Hib; forms an ester bond instead of an amide bond) are being investigated. We describe in this report crystal structures of three model com-pounds-Boc-Aib-Hib-NHBzl (1; Bzl, benzyl), Z-Aib-Hib-NHBzl (2; Z, benzyloxycarbonyl), and Z-L-Hyp-Aib-NHMe (3) - which contain the repeating unit of potential $\beta$-bend ribbon structures.

## EXPERIMENTAL

The synthesis and characterization of Boc-Aib-HibNHBzl (1) and Z-Aib-Hib-NHBzl (2) have been described. ${ }^{9}$ Z-Hyp-Aib-NHMe (3) was prepared by saturating a methanolic solution of Z-L-Hyp-AibOMe with gaseous $\mathrm{CH}_{3} \mathrm{NH}_{2}$. The dipeptide ester was

Table I Crystal Data for Boc-Aib-Hib-NHBzl (1), Z-Aib-Hib-NHBzl (2), and Z-L-Hyp-Aib-NHMe (3)

|  | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| Molecular formula | $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$ | $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}$ | $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}$ |
| MW (amu) | 378.5 | 411.5 | 363.4 |
| Crystal dimensions (mm) | $0.2 \times 0.3 \times 0.4$ | $0.6 \times 0.5 \times 0.5$ | $0.2 \times 0.2 \times 0.4$ |
| Density (calcd) $\mathrm{g} / \mathrm{cm}^{3}$ | 1.193 | 1.214 | 1.265 |
| Density (exptl.) $\mathrm{g} / \mathrm{cm}^{3}$ | 1.19 | 1.21 | 1.26 |
| Crystal system | Monoclinic | Monoclinic | Monoclinic |
| Space group | $\mathrm{C}_{\text {c }}$ | $\mathrm{C}_{\mathrm{c}}$ | P2 $1_{1}$ |
| Z | 4 | 4 | 2 |
| $\boldsymbol{a}$ ( $\AA$ ) | 19.560 (2) | 17.411 (2) | 9.666 (3) |
| $b$ ( $\AA$ ) | 6.262 (1) | 13.004 (2) | 12.017 (3) |
| $c$ ( $\AA$ ) | 17.485 (2) | 10.519 (1) | 8.924 (3) |
| $V\left(\mathrm{~A}^{3}\right)$ | 2107.8 | 2251.9 | 954.4 |
| $\beta\left({ }^{\circ}\right)$ | 100.2 (2) | 109.0 (2) | 112.9 (1) |
| Independent reflections | 2631 | 2859 | 1770 |
| Reflections [ $I \geq 3 \sigma(I)$ ] | 1284 | 2305 | 1468 |
| $R$ value | 0.052 | 0.081 | 0.039 |
| $R_{\text {w }}$ value | 0.052 | 0.081 | 0.040 |
| Crystallization solvent | Acetone-water | Acetone-water | Dimethyl sulfoxide |
| Radiation | $\mathrm{MoK}_{a}, \lambda=0.7107 \AA$ | $\mathrm{MoK}_{a}, \lambda=0.7107 \AA$ | $\mathrm{MoK}_{\alpha}, \lambda=0.7107 \AA$ |
| $(\Delta / \sigma)_{\text {max }}$ | 1.1 | 1.2 | 0.09 |
| Maximum and minimum heights in final $\Delta F$ (e. $\AA^{-3}$ ) | $\pm 0.2$ | $\pm 0.2$ | $\pm 0.2$ |

prepared by coupling Z-L-Hyp-OH to H-Aib-OMe, using $\mathrm{N}, \mathrm{N}^{\prime}$-dicyclohexylcarbodiimide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by the standard workup as described for related peptides. ${ }^{10}$ The compounds were characterized by ${ }^{1} \mathrm{H}-\mathrm{nmr}$. Crystallization solvents and all relevant crystal parameters are summarized in Table I. The x-ray diffraction data were collected on a Phillips PW 1100 four-circle diffractometer, $\theta-2 \theta$ scan mode to $2 \theta=50^{\circ}$. Structures of compounds 1 and 2 were solved by direct methods using the SHELX S-86 program ${ }^{11}$ and refined by block-matrix least-squares procedures ( $w=1$ ), using anisotropic thermal parameters for all nonhydrogen atoms. Hydrogen atoms were in part stereochemically fixed and the remaining found in the difference Fourier map and not refined. The SHELX-76 program ${ }^{12}$ was used for all calculations. The structure of 3 was solved using the direct methods program MULTAN$80 .{ }^{13}$ Hydrogen atoms were located in the difference Fourier map, but they were introduced in calculated positions and refined in the last cycle. The quantity minimized was $w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, with $w=\left[\sigma^{2}(F)\right.$ $\left.+0.00037\left|F^{2}\right|\right]^{-1}$. Fractional coordinates for the nonhydrogen atoms and equivalent isotropic thermal factors in compounds 1-3 are listed in Tables

II-IV. Structure factors and hydrogen atom coordinates have been deposited and are available from the Cambridge Crystallographic Data Centre.

## RESULTS AND DISCUSSION

The molecular structures of compounds 1-3 are illustrated in Figures 1-3. The relevant backbone and pyrrolidine ring torsion angles ${ }^{14}$ are listed in Table V. For the two achiral compounds 1 and 2 the signs of the torsion angles listed correspond to those for the "D-D" isomer. The geometry of the intra- and intermolecular hydrogen bonds are reported in Table VI.

Bond lengths and angles are in general agreement with previously described results for the geometry of the tert-butyloxycarbonyl, ${ }^{15}$ benzyloxycarbonyl, ${ }^{16}$ amide, ${ }^{17}$ and ester ${ }^{18}$ groups; Aib, ${ }^{19,20} \mathrm{Hib}^{21}$ and $\mathrm{Hyp}^{22}$ residues; and the peptide unit. ${ }^{23}$ The bond angles at the $\mathrm{C}^{\alpha}$ atom of the Aib and Hib residues deviate significantly from the ideal tetrahedral value; in particular, the $\tau\left(\mathrm{N}-\mathrm{C}^{\alpha}-\mathrm{C}^{\prime}\right.$ or $\left.\mathrm{O}-\mathrm{C}^{\alpha}-\mathrm{C}^{\prime}\right)$ bond angle has values in the range of $111.2^{\circ}-112.7^{\circ}$, for residues

Table II Fractional Coordinates ( $\times 10^{4}$ ) and Equivalent Isotropic Temperature Factors ( $\overline{\mathbf{A}}^{\mathbf{2}} \times 1 \mathbf{1 0}^{\mathbf{3}}$ ) for Boc-Aib-Hib-NHBzl (1) [Estimated Standard Deviations (ESDs) Are Given in Parentheses]

| Atom | $x$ | $y$ | $z$ | $U_{\text {eq }}^{* *}$ |
| :---: | :---: | :---: | :---: | :---: |
| Ou | 10000 | 6382 (8) | 0000 | 49 (2) |
| $\mathrm{O}_{0}$ | 9798 (2) | 3639 (8) | 788 (3) | 49 (2) |
| $\mathrm{O}_{1}$ | 8127 (3) | 1601 (9) | 1005 (3) | 62 (2) |
| " $\mathrm{O}_{2}$ " | 8472 (2) | 5015 (8) | 1081 (3) | 41 (2) |
| $\mathrm{O}_{2}$ | 8595 (3) | 3427 (9) | 3095 (3) | 58 (2) |
| $\mathrm{N}_{1}$ | 8993 (3) | 4760 (1) | -238 (3) | 45 (2) |
| $\mathrm{N}_{3}$ | 9377 (3) | 3180 (1) | 2279 (3) | 48 (2) |
| C (1) | 10887 (4) | 8860 (1) | 0000 (5) | 68 (3) |
| C (2) | 10525 (4) | 7860 (1) | 1266 (5) | 65 (3) |
| C (3) | 11194 (4) | 5220 (1) | 578 (5) | 64 (3) |
| C (4) | 10668 (4) | 7030 (1) | 499 (4) | 51 (3) |
| $\mathrm{C}_{0}^{\prime}$ | 9618 (4) | 4790 (1) | 234 (4) | 42 (2) |
| $\mathrm{C}_{1}^{\alpha}$ | 8459 (4) | 3210 (1) | -122 (4) | 47 (2) |
| $\mathrm{C}_{1}^{\beta 1}$ | 8639 (5) | 960 (2) | -389 (5) | 73 (4) |
| $\mathrm{C}_{1}^{82}$ | 7768 (4) | 3980 (1) | -602 (4) | 61 (3) |
| $\mathrm{C}_{1 \alpha}^{\prime}$ | 8351 (3) | 3130 (1) | 715 (4) | 41 (2) |
| $\mathrm{C}_{2}^{\alpha}$ | 8316 (3) | 5250 (1) | 1868 (4) | 47 (3) |
| $\mathrm{C}_{2}^{11}$ | 8534 (5) | 7520 (1) | 2093 (5) | 63 (3) |
| $\mathrm{C}_{2}^{\beta 2}$ | 7544 (4) | 4930 (2) | 1868 (5) | 66 (4) |
| $\mathrm{C}_{2}^{\prime}$ | 8768 (4) | 3780 (1) | 2465 (5) | 44 (3) |
| C (5) | 9925 (5) | 2220 (1) | 2841 (5) | 53 (3) |
| C (6) | 10552 (4) | 3680 (1) | 2983 (5) | 47 (3) |
| C (7) | 11169 (5) | 3150 (2) | 2755 (6) | 59 (4) |
| C (8) | 11736 (5) | 4500 (2) | 2862 (6) | 73 (4) |
| C (9) | 11692 (6) | 6400 (2) | 3245 (6) | 74 (4) |
| C (10) | 11077 (7) | 7000 (2) | 3476 (6) | 74 (5) |
| C (11) | 10514 (7) | 5660 (2) | 3358 (6) | 65 (5) |

$$
{ }^{\mathrm{a}} U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} a_{i} \cdot a_{j} .
$$

with helical conformations, while a value of $105^{\circ}$ is observed for the semiextended Aib residue of $\mathrm{Z}-\mathrm{Aib}-$ Hib-NHBzl (vide infra), thus confirming the interdependence between geometry at the tetrahedral $\mathrm{C}^{\alpha}$ atom and backbone conformation. ${ }^{19,20}$

The conformation of the urethane moiety, as defined by the torsion angles $\omega_{0}$ and $\theta^{1}$, in the three compounds is type $b$ or trans-trans. ${ }^{15}$ The $\theta^{2}$ torsion angle, which gives the orientation of the phenyl group with respect to the rest of the molecule, ${ }^{16}$ is also trans in the two Z-protected compounds. The distribution of the $\theta^{3}$ and $\theta^{3 \prime}$ values, which give the extent of rotation of the phenyl ring about the ben-
zylic bond, is broad, as commonly found in Z-containing compounds. ${ }^{16}$ The amide, ${ }^{17}$ ester, ${ }^{18}$ and peptide ${ }^{23}$ groups in the three compounds are all in the common trans disposition, the only significant deviation from planarity being given by the amide group of Boc-Aib-Hib-NHBzl ( $\omega_{2}=166.1^{\circ}$ ). The $\theta^{1}$ angle of the benzyl-amido moiety is $-115.0^{\circ}$ for 1 [angle $\mathrm{C}_{2}^{\prime}-\mathrm{N}_{3}-\mathrm{C}(5)-\mathrm{C}(16)$ ] and $-102.8^{\circ}$ for 2 [angle $\left.\mathrm{C}_{2}^{\prime}-\mathrm{N}_{3}-\mathrm{C}(8)-\mathrm{C}(9)\right]$.

The pyrrolidine ring of the L-Hyp residue of 3 exhibits an approximate $C_{8}$ (envelope) symmetry, the mirror plane passing through the $\mathrm{C}^{\gamma}$ atom. This

Table III Fractional Coordinates ( $\times 10^{4}$ ) and Equivalent Isotropic Temperature Factors
( $\AA^{\mathbf{2}} \times \mathbf{1 0}^{\mathbf{3}}$ ) for Z-Aib-Hib-NHBzl (2)
(ESDs Are Given in Parentheses)

| Atom | $x$ | $y$ | $z$ | $U_{\text {eq }}^{*}{ }^{* 8}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O}_{\mathrm{u}}$ | 10000 | 2511 (4) | 10000 | 56 (8) |
| $\mathrm{O}_{0}$ | 9050 (3) | 1544 (4) | 8524 (5) | 56 (8) |
| $\mathrm{O}_{1}$ | 9211 (3) | 2565 (4) | 5872 (6) | 61 (8) |
| " $\mathrm{O}_{2}$ " | 8783 (3) | 935 (4) | 5431 (6) | 60 (8) |
| $\mathrm{O}_{2}$ | 6863 (3) | 2244 (4) | 4126 (6) | 68 (8) |
| $\mathrm{N}_{1}$ | 10284 (3) | 1771 (4) | 8309 (6) | 48 (9) |
| $\mathrm{N}_{3}$ | 7573 (3) | 1767 (5) | 6246 (6) | 53 (8) |
| C (1) | 9807 (4) | 3504 (6) | 11757 (7) | 54 (9) |
| C (2) | 10139 (5) | 3185 (6) | 13097 (8) | 68 (9) |
| C (3) | 10520 (6) | 3892 (7) | 14113 (8) | 82 (9) |
| C (4) | 10547 (5) | 4911 (7) | 13787 (8) | 75 (9) |
| C (5) | 10216 (5) | 5249 (6) | 12496 (8) | 78 (9) |
| C (6) | 9850 (5) | 4560 (6) | 11447 (8) | 74 (8) |
| C (7) | 9413 (4) | 2745 (6) | 10648 (7) | 60 (9) |
| $\mathrm{C}_{0}^{\prime}$ | 9732 (4) | 1908 (5) | 8913 (7) | 48 (9) |
| $\mathrm{C}_{1}^{\alpha}$ | 10110 (4) | 1187 (5) | 7045 (7) | 49 (9) |
| $\mathrm{C}_{1}^{\beta 1}$ | 10772 (4) | 1373 (6) | 6444 (7) | 62 (9) |
| $\mathrm{C}_{1}^{\beta 2}$ | 10010 (5) | 32 (7) | 7321 (8) | 76 (8) |
| $\mathrm{C}_{1}^{\prime}$ | 9314 (4) | 1677 (5) | 6070 (7) | 52 (9) |
| $\mathrm{C}_{2}^{\alpha}$ | 8018 (4) | 1219 (6) | 4383 (8) | 66 (9) |
| $\mathrm{C}_{2}^{\beta 1}$ | 7647 (5) | 179 (7) | 3902 (9) | 93 (9) |
| $\mathrm{C}_{2}^{\text {¢2 }}$ | 8201 (5) | 1829 (7) | 3196 (8) | 79 (9) |
| $\mathrm{C}_{2}^{\prime}$ | 7456 (4) | 1815 (5) | 4948 (7) | 52 (9) |
| C (8) | 7038 (4) | 2222 (6) | 6889 (7) | 57 (9) |
| C (9) | 7348 (4) | 3224 (5) | 7632 (7) | 51 (9) |
| C (10) | 7074 (5) | 3502 (7) | 8682 (8) | 70 (9) |
| C (11) | 7324 (5) | 4426 (7) | 9374 (8) | 80 (9) |
| C (12) | 7834 (5) | 5072 (7) | 8968 (9) | 81 (9) |
| C (13) | 8129 (5) | 4798 (7) | 7962 (8) | 76 (9) |
| C (14) | 7889 (5) | 3860 (6) | 7297 (7) | 63 (9) |

[^1]Table IV Fractional Coordinates ( $\times 10^{4}$ ) and Equivalent Isotropic Temperature Factors ( $\AA^{\mathbf{2}} \times 10^{\mathbf{3}}$ ) for Z-L-Hyp-Aib-NHMe (3) (ESDs Are Given in Parentheses)

| Atom | $x$ | $y$ | $z$ | $U_{\text {eq }}{ }^{\mathrm{a}}$ |
| :--- | ---: | ---: | ---: | ---: |
| $\mathrm{O}_{\mathrm{u}}$ | $4861(2)$ | $-344(2)$ | $-2783(3)$ | $65(1)$ |
| $\mathrm{O}_{0}$ | $2482(2)$ | $53(3)$ | $-3019(3)$ | $78(1)$ |
| $\mathrm{O}^{\delta}$ | $4554(2)$ | $-3138(2)$ | $359(4)$ | $77(1)$ |
| $\mathrm{O}_{1}$ | $3314(2)$ | $1004(2)$ | $638(3)$ | $65(1)$ |
| $\mathrm{O}_{2}$ | $351(3)$ | $3080(2)$ | $110(4)$ | $83(1)$ |
| $\mathrm{N}_{1}$ | $4132(3)$ | $-834(2)$ | $-802(3)$ | $52(1)$ |
| $\mathrm{N}_{2}$ | $1109(2)$ | $162(2)$ | $220(3)$ | $47(1)$ |
| $\mathrm{N}_{3}$ | $304(4)$ | $1938(2)$ | $-1907(4)$ | $76(1)$ |
| $\mathrm{C}(1)$ | $5993(4)$ | $266(0)$ | $-4587(4)$ | $63(1)$ |
| $\mathrm{C}(2)$ | $6140(4)$ | $1055(4)$ | $-5652(4)$ | $78(2)$ |
| $\mathrm{C}(3)$ | $7398(5)$ | $1048(4)$ | $-6042(5)$ | $91(2)$ |
| $\mathrm{C}(4)$ | $8532(5)$ | $294(5)$ | $-5333(5)$ | $92(2)$ |
| $\mathrm{C}(5)$ | $8411(4)$ | $-473(4)$ | $-4278(5)$ | $88(2)$ |
| $\mathrm{C}(6)$ | $7143(4)$ | $-488(3)$ | $-3894(5)$ | $76(2)$ |
| $\mathrm{C}(7)$ | $4581(4)$ | $263(4)$ | $-4248(4)$ | $75(2)$ |
| $\mathrm{C}_{0}^{\prime}$ | $3718(4)$ | $-351(3)$ | $-2261(4)$ | $59(1)$ |
| $\mathrm{C}_{1}^{\alpha}$ | $3091(3)$ | $-958(3)$ | $-15(4)$ | $50(1)$ |
| $\mathrm{C}_{1}^{\beta}$ | $4039(4)$ | $-1534(3)$ | $1581(4)$ | $61(1)$ |
| $\mathrm{C}_{1}^{\gamma}$ | $5231(3)$ | $-2156(3)$ | $1204(4)$ | $57(1)$ |
| $\mathrm{C}_{1}^{\delta}$ | $5598(3)$ | $-1347(3)$ | $110(4)$ | $57(1)$ |
| $\mathrm{C}_{1}^{\prime}$ | $2514(3)$ | $168(3)$ | $296(4)$ | $49(1)$ |
| $\mathrm{C}_{2}^{\alpha}$ | $413(3)$ | $1128(2)$ | $648(4)$ | $48(1)$ |
| $\mathrm{C}_{2}^{\beta 1}$ | $-1234(3)$ | $821(3)$ | $279(5)$ | $65(1)$ |
| $\mathrm{C}_{2}^{\beta 2}$ | $1218(4)$ | $1426(3)$ | $2427(4)$ | $66(1)$ |
| $\mathrm{C}_{2}^{\prime}$ | $386(3)$ | $2137(3)$ | $-421(4)$ | $51(1)$ |
| $\mathrm{C}(8)$ | $214(5)$ | $2833(4)$ | $-3051(5)$ | $100(2)$ |
|  |  |  |  |  |

$$
{ }^{2} U_{\mathrm{eq}}=\frac{1}{3} \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} a_{i} \cdot a_{j}
$$

conformation may be designated as $\mathrm{C}_{8}-\mathrm{C}^{\gamma}$ exo or conformation A. ${ }^{24,25}$ The puckering coordinates for the five-membered ring ${ }^{26}$ are: $q_{2}=0.379(3) \AA, \phi_{2}$ $=-101.3(5)^{\circ}$.

The backbone conformations of all three compounds are folded. Compounds 1 and 2 take up a $\beta$-bend conformation, but interestingly they differ in the type of $\beta$-bend that is formed ${ }^{27,28} \mathrm{~A}$ type $\mathrm{III}^{\prime}$ (III) $\beta$-bend is adopted by Boc-Aib-Hib-NHBzl 1 $\left(\phi_{1}=48.7^{\circ}, \psi_{1}=30.9^{\circ} ; \phi_{2}=63.9^{\circ}, \psi_{2}=24.1^{\circ}\right)$, while a type II' (II) $\beta$-bend is observed for Z-Aib-Hib-NHBzl $2\left(\phi_{1}=51.9^{\circ}, \psi_{1}=-134.2^{\circ} ; \phi_{2}=-66.3^{\circ}\right.$, $\psi_{2}=-18.9^{\circ}$ ). In both cases, the intramolecular hydrogen bond involves the amide NH and urethane CO groups. The $\mathrm{N}_{3} \cdots \mathrm{O}_{0}$ separation is 2.88 (1) and 2.90 (1) $\AA^{29,30}$ for 1 and 2, respectively. The type

III' $^{\prime} \beta$-bend of $\mathbf{1}$ is additionally stabilized by a weak $\mathrm{N}_{3} \cdots{ }^{\prime} \mathrm{O}_{2}$ " intramolecular interaction [2.74(1) $\AA] .{ }^{31}$ These findings should be compared with the crystal structures of $\mathrm{Ac}-(\mathrm{Aib})_{2}$ - $\mathrm{Aib}-\mathrm{OMe}$ and Ac (Aib) ${ }_{2}$-R-Iva-OMe, the former assuming a type III (III') $\beta$-bend conformation while the latter adopts a type II $\beta$-bend. ${ }^{32}$ Z-L-Hyp-Aib-NHMe (3) adopts a conformation not far from a regular type II $\beta$-bend $\left(\phi_{1}=-60.5^{\circ}, \psi_{1}=147.5^{\circ} ; \phi_{2}=59.3^{\circ}, \psi_{2}=29.7^{\circ}\right)$. The $\mathrm{N}_{3} \cdots \mathrm{O}_{0}$ distance is 3.49 (1) $\AA$, which is too long for an acceptable $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond. Interestingly, the closely related peptide Piv-L-Pro-Aib-NHMe (Piv, pivaloyl) folds into a typeII $\beta$-turn in the solid state. ${ }^{10}$

The crystal packing modes for compounds 1 and 2 are characterized by the same type of intermolecular hydrogen bonds, involving the urethane NH and amide CO groups of symmetry-related molecules (figure not shown). The $\mathrm{N}_{1} \cdots \mathrm{O}_{2}$ distance is 3.10 (1) $\AA$ in 1 and 2.90 (1) $\AA$ in 2. In Z-L-Hyp-AibNHMe, the molecules are held together in the crystal by two types of intermolecular hydrogen bonds, of the (peptide) $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (amide) and (Hyp side chain) $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (peptide) types (figure not shown). The $\mathrm{N}_{2} \cdots \mathrm{O}_{2}$ separation is $2.83 \AA$, while the $\mathrm{O}^{\delta} \cdots \mathrm{O}_{1}$ separation is $2.74(1) \AA \AA^{33,34}$

The structures of compounds 1-3 demonstrate that modification of the central peptide unit by replacement of the amide with an ester bond (1,2) or by N -alkylation (3) leaves the $\beta$-bend conformation favored in Aib-containing sequences largely unaffected. The differences between the energies of the type III' (III) and type II' (II) conformations for the Aib-Hib sequences appear small, and changes in the nature of the N -terminal blocking group lead to an alteration in the $\beta$-turn type. The observation of a semiextended conformation at $\operatorname{Aib}\left(\phi \sim \pm 60^{\circ}\right.$, $\psi \sim \mp 120^{\circ}$ ) is rather unusual, but there are a growing number of examples of this conformation, ${ }^{32,35}$ with Aib at the $i+1$ position of a type $\mathrm{II}^{\prime}$ (II) $\beta$ turn. The distorted type II $\beta$-turn conformation, observed for Z-L-Hyp-Aib-NHMe, may be contrasted to the type III $\beta$-turn established for the -L-Hyp-Aib- segment in Boc-L-Hyp-Aib-Aib-L-Phol. ${ }^{22}$ Clearly, in sequences of the type Pro/Hyp-Aib the energy differences between type II and type III $\beta$ turn structures is marginal, ${ }^{10}$ and equilibration in solution is a possibility ${ }^{36}$ In repetitive sequences of the kind observed at the C-terminal end of antiamoebins ${ }^{37}$ or zervamicins, ${ }^{38} \beta$-bend ribbons may be favored, as observed for a 16 -residue synthetic analogue of zervamicin. ${ }^{6}$


Figure 1. Molecular structure of Boc-Aib-Hib-NHBzl (1) with numbering of the atoms. The intramolecular hydrogen bond is shown as a dashed line.


Figure 2. Molecular structure of Z-Aib-Hib-NHBzl (2) with numbering of the atoms. The intramolecular hydrogen bond is shown as a dashed line.


Figure 3. Molecular structure of Z-L-Hyp-Aib-NHMe (3) with numbering of the atoms.

Table V Backbone and Side-Chain Torsion Angles ${ }^{\circ}\left({ }^{\circ}\right)$ in Boc-Aib-Hib-NHBzl (1), Z-Aib-Hib-NHBzl (2), and Z-L-Hyp-Aib-NHMe (3)

Peptide $1 \quad$ Peptide 2

| $\omega_{0}\left(\mathrm{O}_{\mathrm{u}}-\mathrm{C}_{0}^{\prime}-\mathrm{N}_{1}-\mathrm{C}_{1}^{\alpha}\right)$ | $-179.2(7)$ | $\omega_{0}\left(\mathrm{O}_{\mathrm{u}}-\mathrm{C}_{0}^{\prime}-\mathrm{N}_{1}-\mathrm{C}_{1}^{\alpha}\right)$ | $-176.2(7)$ |
| :--- | :---: | :--- | ---: |
| $\phi_{1}\left(\mathrm{C}_{0}^{\prime}-\mathrm{N}_{1}-\mathrm{C}_{1}^{\alpha}-\mathrm{C}_{1}^{\prime}\right)$ | $48.7(10)$ | $\phi_{1}\left(\mathrm{C}_{0}^{\prime}-\mathrm{N}_{1}-\mathrm{C}_{1}^{\alpha}-\mathrm{C}_{1}^{\prime}\right)$ | $51.9(10)$ |
| $\psi_{1}\left(\mathrm{~N}_{1}-\mathrm{C}_{1}^{\alpha}-\mathrm{C}^{\prime} 1-" \mathrm{O}_{2}^{\prime "}\right)$ | $30.9(10)$ | $\psi_{1}\left(\mathrm{~N}_{1}-\mathrm{C}_{1}^{\alpha}-\mathrm{C}_{1}^{\prime}-{ }^{\prime} \mathrm{O}_{2} "\right)$ | $-134.2(7)$ |
| $\omega_{1}\left(\mathrm{C}_{1}^{\alpha}-\mathrm{C}_{1}^{\prime}-" \mathrm{O}_{2} "-\mathrm{C}_{2}^{\alpha}\right)$ | $173.4(7)$ | $\omega_{1}\left(\mathrm{C}_{1}^{\alpha}-\mathrm{C}_{1}^{\prime}-{ }^{\prime} \mathrm{O}_{2} "-\mathrm{C}_{2}^{\alpha}\right)$ | $-175.1(7)$ |
| $\phi_{2}\left(\mathrm{C}_{1}^{\prime}-" \mathrm{O}_{2} "-\mathrm{C}_{2}^{\alpha}-\mathrm{C}_{2}^{\prime}\right)$ | $63.9(10)$ | $\phi_{2}\left(\mathrm{C}_{1}^{\prime}-\mathrm{O}_{2} "-\mathrm{C}_{2}^{\alpha}-\mathrm{C}_{2}^{\prime}\right)$ | $66.3(10)$ |
| $\psi_{2}\left({ }^{\prime} \mathrm{O}_{2} "-\mathrm{C}_{2}^{\alpha}-\mathrm{C}_{2}^{\prime}-\mathrm{N}_{3}\right)$ | $24.1(10)$ | $\psi_{2}\left({ }^{\prime \prime} \mathrm{O}_{2} "-\mathrm{C}_{2}^{\alpha}-\mathrm{C}_{2}^{\prime}-\mathrm{N}_{3}\right)$ | $-18.9(10)$ |
| $\omega_{2}\left(\mathrm{C}_{2}^{\alpha}-\mathrm{C}_{2}^{\prime}-\mathrm{N}_{3}-\mathrm{C}_{5}\right)$ | $166.1(8)$ | $\omega_{2}\left(\mathrm{C}_{2}^{\alpha}-\mathrm{C}_{2}^{\prime}-\mathrm{N}_{3}-\mathrm{C}_{5}\right)$ | $-174.2(8)$ |

Peptide 3

| $\omega_{0}\left(\mathrm{O}_{\mathrm{u}}-\mathrm{C}_{0}^{\prime}-\mathrm{N}_{1}-\mathrm{C}_{1}^{\alpha}\right)$ | $-178.7(3)$ | $\theta\left(\mathrm{C}_{1}^{\delta}-\mathrm{N}_{1}-\mathrm{C}_{1}^{\alpha}-\mathrm{C}_{1}^{\beta}\right)$ | $3.9(4)$ |
| :--- | ---: | :--- | ---: |
| $\phi_{1}\left(\mathrm{C}_{0}^{\prime}-\mathrm{N}_{1}-\mathrm{C}_{1}^{\alpha}-\mathrm{C}_{1}^{\prime}\right)$ | $-60.5(5)$ | $\chi^{1}\left(\mathrm{~N}_{1}-\mathrm{C}_{1}^{\alpha}-\mathrm{C}_{1}^{\beta}-\mathrm{C}_{1}^{\Gamma}\right)$ | $-26.3(4)$ |
| $\psi_{1}\left(\mathrm{~N}_{1}-\mathrm{C}_{1}^{\alpha}-\mathrm{C}_{1}^{\prime}-\mathrm{N}_{2}\right)$ | $147.5(3)$ | $\chi^{2}\left(\mathrm{C}_{1}^{\alpha}-\mathrm{C}_{1}^{\beta}-\mathrm{C}_{1}^{\gamma}-\mathrm{C}_{1}^{\delta}\right)$ | $38.5(4)$ |
| $\omega_{1}\left(\mathrm{C}_{1}^{\alpha}-\mathrm{C}_{1}^{\prime}-\mathrm{N}_{2}-\mathrm{C}_{2}^{\alpha}\right)$ | $173.4(3)$ | $\chi^{3}\left(\mathrm{C}_{1}^{\beta}-\mathrm{C}_{1}^{\gamma}-\mathrm{C}_{1}^{\delta}-\mathrm{N}_{1}\right)$ | $-35.0(4)$ |
| $\phi_{2}\left(\mathrm{C}_{2}^{\prime}-\mathrm{N}_{2}-\mathrm{C}_{2}^{\alpha}-\mathrm{C}_{2}^{\prime}\right)$ | $59.3(4)$ | $\chi^{4}\left(\mathrm{C}_{1}^{\Gamma}-\mathrm{C}_{1}^{\delta}-\mathrm{N}_{1}-\mathrm{C}_{1}^{\Gamma}\right)$ | $19.8(4)$ |
| $\psi_{2}\left(\mathrm{~N}_{1}-\mathrm{C}_{2}^{\alpha}-\mathrm{C}_{2}^{\prime}-\mathrm{N}_{3}\right)$ | $29.7(5)$ |  |  |
| $\left.\omega_{2} \mathrm{C}_{2}^{\alpha}-\mathrm{C}_{2}^{\prime}-\mathrm{N}_{3}-\mathrm{C}(8)\right]$ | $177.6(4)$ |  |  |

[^2]Table VI Geometry of the Intra- and Intermolecular Hydrogen Bonds in the Crystals of Boc-Aib-Hib-NHBzl (1), Z-Aib-Hib-NHBzl (2), and Z-L-Hyp-Aib-NHMe (3)

| Compound | Donor$D-H$ | $\begin{gathered} \text { Acceptor } \\ \quad A \end{gathered}$ | Symmetry Equivalent of $A$ | Distances ( $\AA$ ) |  | $\begin{gathered} \text { Angle }\left({ }^{\circ}\right) \\ D-H-A \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $D-A$ | H-A |  |
| 1 | $\mathrm{N}_{3}-\mathrm{H}$ | $\mathrm{O}_{0}$ | $x, y, z$ | 2.88 (1) | 2.10 (1) | 134 (1) |
|  | $\mathrm{N}_{1}-\mathrm{H}$ | $\mathrm{O}_{2}$ | $x, 1-y, z-\frac{1}{2}$ | 3.10 (1) | 2.10 (1) | 156 (1) |
| 2 | $\mathrm{N}_{3}-\mathrm{H}$ | $\mathrm{O}_{0}$ | $x, y, z$ | 2.90 (1) | 1.98 (1) | 139 (1) |
|  | $\mathrm{N}_{1}-\mathrm{H}$ | $\mathrm{O}_{2}$ | $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$ | 2.90 (1) | 1.82 (1) | 167 (1) |
|  | $\mathrm{N}_{1}-\mathrm{H}$ | $\mathrm{O}_{2}$ | $-x, y-\frac{1}{2},-z$ | 2.83 (1) | 1.95 (1) | 170 (1) |
| 3 | $\mathrm{O}^{\delta}-\mathrm{H}$ | $\mathrm{O}_{1}$ | $1-x, y-\frac{1}{2},-z$ | 2.74 (1) | 2.01 (1) | 153 (1) |

This research was partially supported by a grant from the Department of Science and Technology, India. KU was the recipient of a fellowship from the Council of Scientific and Industrial Research, India.

## REFERENCES

1. Shamala, N., Nagaraj, R. \& Balaram, P. (1977) Biochem. Biophys. Res. Commun. 79, 292-298.
2. Nagaraj, R., Shamala, N. \& Balaram, P. (1979) J. Am. Chem. Soc. 101, 16-20.
3. Toniolo, C., Bonora, G. M., Bavoso, A., Benedetti, E., Di Blasio, B., Pavone, V. \& Pedone, C. (1983) Biopolymers 22, 205-215.
4. Prasad, B. V. V. \& Balaram, P. (1983) in Conformation in Biology, Srinivasan, R. \& Sarma, R. H., Eds., Adenine Press, New York, pp. 133-140.
5. Prasad, B. V. V. \& Balaram, P. (1984) CRC Crit. Rev. Biochem. 16, 307-347.
6. Karle, I. L., Flippen-Anderson, J. L., Sukumar, M. \& Balaram, P. (1987) Proc. Natl. Acad. Sci. USA 84, 5087-5091.
7. Venkatachalapathi, Y. V., Nair, C. M. K., Vijayan, M. \& Balaram, P. (1981) Biopolymers 20, 1123-1136.
8. Prasad, B. V. V. \& Balaram, P. (1982) Int. J. Biol. Macromol. 4, 99-102.
9. Cavicchioni, G. (1987) Tetrahed. Lett. 2427-2430.
10. Prasad, B. V. V., Balaram, H. \& Balaram, P. (1982) Biopolymers 21, 1261-1273.
11. Sheldrick, G. M. (1985) in Crystallographic Computing, Sheldrick, G. M., Kruger, C. \& Goddard, R., Eds., Oxford University Press, pp. 175-189.
12. Sheldrick, G. M. (1976) SHELX76. Program for Crystal Structure Determination, University of Cambridge, England.
13. Main, P., Fiske, S. J., Hull, S. E., Lessinger, L. Germain, G., Declercq, J. P. \& Woolfson, M. M. (1980) MULTAN 80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray

Diffraction Data, Universities of York, England, and Louvain, Belgium.
14. IUPAC-IUB Commission on Biochemical Nomenclature. (1970) Biochemistry 9, 3471-3479.
15. Benedetti, E., Pedone, C., Toniolo, C., Nemethy, G., Pottle, M. S. \& Scheraga, H. A. (1980) Int. J. Peptide Protein Res. 16, 156-172.
16. Benedetti, E., Pedone, C., Toniolo, C., Dudek, M., Nemethy, G. \& Scheraga, H. A. (1983) Int. J. Peptide Protein Res. 21, 163-181.
17. Chakrabarti, P. \& Dunitz, J. D. (1982) Helv. Chim. Acta 65, 1555-1562.
18. Schweizer, W. B. \& Dunitz, J. D. (1982) Helv. Chim. Acta 65, 1547-1554.
19. Paterson, Y., Rumsey, S. M., Benedetti, E., Nemethy, G. \& Scheraga, H. A. (1981) J. Am. Chem. Soc. 103, 2947-2955.
20. Valle, G., Crisma, M., Formaggio, F., Toniolo, C. \& Jung, G. (1987) Liebigs Ann. Chem. 1055-1060.
21. Gaykema, W. P. J., Kanters, J. A. \& Roelofsen, G. (1978) Cryst. Struct. Commun. 7, 463-466.
22. Van Roey, P., Smith, G. D., Balasubramanian, T. M., Redlinski, A. S. \& Marshall, G. R. (1982) Int. J. Peptide Protein Res. 19, 499-505.
23. Benedetti, E. (1982) in Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. 6, Weinstein, B., Ed., Dekker, New York, pp. 105-184.
24. Balasubramanian, R., Lakshminarayanan, A. V., Sabesan, M. N., Tegoni, G., Venkatesan, K. \& Ramachandran, G. N. (1971) Int. J. Protein Res. 3, 25-33.
25. Ashida, T. \& Kakudo, M. (1974) Bull. Chem. Soc. Jpn. 47, 1129-1133.
26. Cremer, D. \& Pople, J. A. (1975) J. Am. Chem. Soc. 97, 1354-1358.
27. Venkatachalam, C. M. (1968) Biopolymers 6, 14251436.
28. Rose, G. D., Gierasch, L. M. \& Smith, J. A. (1985) Adv. Protein Chem. 37, 1-109.
29. Ramakrishnan, C. \& Prasad, N. (1971) Int. J. Protein Res. 3, 209-231.
30. Taylor, R., Kennard, O. \& Versichel, W. (1984) Acta Cryst. B 40, 280-288.
31. Lecomte, C., Aubry, A. Protas, J., Boussard, G. \& Marraud, M. (1974) Acta. Cryst. B 30, 1992-1996.
32. Valle, G., Crisma, M., Toniolo, C., Beisswenger, R., Rieker, A. \& Jung, G. (1988) Liebigs Ann. Chem. 337343.
33. Brown, I. D. (1976) Acta Cryst. A 32, 24-31.
34. Mitra, J. \& Ramakrishnan, C. (1977) Int. J. Peptide Protein Res. 9, 27-48.
35. Karle, I. L., Kishore, R., Raghothama, S. \& Balaram, P. (1988) J. Am. Chem. Soc. 110, 1958-1963.
36. Crisma, M., Fasman, G. D., Balaram, H. \& Balaram, P. (1984) Int. J. Peptide Protein Res. 23, 411-419.
37. Das, M. K., Raghothama, S. \& Balaram, P. (1986) Biochemistry 25, 7110-7117.
38. Rinehart, K. L., Gaudiso, L. A., Moore, M. L., Pandey, R. C., Cook, J. C., Barber, M. Sedgwick, R. D., Bordoli, R., Tyler, A. N. \& Green, B. N. (1981) J. Am. Chem. Soc. 103, 6517-6520.

Received July 2, 1990
Accepted May 27, 1991


[^0]:    Biopolymers, Vol. 31, 1669-1676 (1991)
    © 1991 John Wiley \& Sons, Inc.

    * To whom correspondence should be addressed.

[^1]:    ${ }^{a} U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i \mathrm{i}} a_{i}^{*} a_{j}^{*} a_{i} \cdot a_{j}$.

[^2]:    ${ }^{\text {a }}$ Torsion angles are defined according to the IUPAC-IUB Commission on Biochemical Nomenclautre. ${ }^{14}$

