
R e s e a r c h  A r t i c l e

T
H

E
 J

O
U

R
N

A
L

 O
F

 C
E

L
L

 B
IO

L
O

G
Y

The Rockefeller University Press  $30.00
J. Gen. Physiol. 2016
https://doi.org/10.1085/jgp.201611608

T
he

 J
o

u
rn

al
 o

f 
G

e
ne

ra
l 

P
hy

si
o

lo
g

y

1

I N T R O D U C T I O N

The effect of concentration ratio of tethered molecules 
and their ligands, constrained by their spatial arrange-
ments and occupancy, is rarely addressed and only spo-
radically incorporated in models of cell contraction and 
adhesion. Almost all models include concepts originally 
introduced by Kramers (Kramers, 1940; Evans and 
Ritchie, 1997) where the strain dependence of a model 
state transition is taken in only one dimension. The spa-
tial occupancy of interacting species is only partially 
considered in mass action kinetic models or by invoking 
simplified spatial rules that do not reflect accurately the 
local spatial arrangement and occupancy of the species. 
The best defined system to quantitatively determine this 
effect is in striated muscle because of its well-ordered 
hexagonal lattice of interacting actin and myosin fila-
ments. Because the myosin molecules are tethered to 
myosin-containing thick filaments and actin monomers 
are arranged in filaments with the myosin-binding sites 

associated with each monomer, the flux of the myosin 
binding is not directly associated with the concentra-
tions of myosin and actin species, but is instead strongly 
affected by the number of myosin-binding sites on actin 
filaments that can be reached by the tethered myosin 
molecules and whether or not any of these sites is al-
ready occupied by bound myosin. This behavior can be 
quantitatively addressed by a new generation of multi-
scale models that bridge scales from atoms to cells and 
to muscle tissues and provide detailed information 
about how structure relates to function.

Attempts to computationally model muscle contrac-
tion started soon after the discovery of sliding filaments 
(Huxley and Niedergerke, 1954; Huxley and Hanson, 
1954), but most of these attempts are so-called mass ac-
tion kinetic models of muscle contraction (e.g., Huxley 
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[1957]) which do not take into account the discrete 
geometrical relationship between individual myosin 
heads and sites on actin in the 3-D sarcomere lattice. 
Instead, most of the models used state probability den-
sity distribution functions along the reaction coordi-
nate, usually denoted as bond strain (e.g., Hill [1974] 
and Smith and Geeves [1995a]). In the first and best 
known mass action (two-state) model, the strain is ex-
pressed as the relative displacement, x, between the po-
sitions of a myosin-binding site on an actin filament (for 
simplicity a site on actin) and of unstrained myosin 
head (Huxley, 1957). This strain can be related via bond 
stiffness to bond force and stored elastic energy. In this 
and later mass action models, strain-dependent transi-
tions between the states are governed by rate transition 
functions, i.e., prescribed functions of the stretch of the 
tethered myosin molecule to reach a binding site or 
being bound to it. The derivation of these strain-depen-
dent rate functions from the reaction energy landscapes 
was elegantly formalized by Hill (1974) and later used 
in most subsequent mass action models.

The main problem for all previous mass action mod-
els is in the calculation of the transition flux between 
the unbound and bound myosin states. In the original 
Huxley 1957 model (Huxley, 1957) and in most of the 
later mass action models, it is assumed that the sum of 
state probability density distribution functions at each 
strain, x, is equal to one. Consequently, the state transi-
tion fluxes at the coordinate x are proportional to the 
sum of products of state transition rates at x and the 
corresponding state probability density distribution 
function at the same location (Huxley, 1957; Hill, 1974). 
Thus, if a subset of the bound myosins moves out of the 
binding region, then the sum of the state probability 
density distribution functions within the binding re-
gion, necessary for accounting of the net flux between 
states, cannot add up to one unless an equivalent num-
ber of myosin heads are drawn into the binding region. 
However, strictly speaking, this approach is ill posed be-
cause the pool of unbound myosin heads is finite and 
also modulated by the number of already attached 
heads. To get around this problem, most authors, in-
cluding A.F. Huxley, focused exclusively on the state 
probability density distribution functions of myosin 
bound to actin that have finite state probabilities. This 
approach accounts only for the fraction of bound heads 
to the total number of heads, i.e., the probability den-
sity of myosin head to be in a bound state. Another dif-
ficulty with these approaches is to ensure that the total 
number of myosin heads is preserved, i.e., that the sum 
of the probabilities of myosin being in any state of acto-
myosin cycle is equal to one. During shortening, length-
ening, or sudden change of length, the number of 
myosin-binding sites on actin filaments coming into the 
range of myosin binding typically does not match the 
number of detached myosins; thus, the sum of bound 

and detached myosins is not preserved. Piazzesi and 
Lombardi (1995) were the first to attempt to resolve 
this problem by proposing a periodicity rule to reduce 
the fraction of available sites on actin for the fraction of 
bound myosin outside the myosin-binding region. 
Using a similar approach, Mijailovich et al. (2000) cor-
rectly accounted for conservation of myosin species in a 
four-state model of smooth muscle. These approaches 
enable the conservation of the myosin species and allow 
for a more precise accounting of the fluxes between the 
states. However, they may not reflect correctly the pop-
ulations of bound myosin to sites on actin, of free myo-
sin-binding sites on actin, and of the unbound myosin 
species in the sarcomere lattice. Also, even with these 
approaches, mass action models do not account for the 
number of available sites on actin filaments that are sev-
eral times larger than the number of active myosin heads.

In the hexagonally packed, myofilament array in the 
sarcomere, myosins are tethered to the thick filament 
backbone and can only bind to a few, geometrically ac-
cessible, actin-binding sites, positioned within the lim-
ited range of movement of myosin heads. These 
geometrical constraints strongly distort the classical 
view of biochemical reactions. There have been several 
models proposed to prescribe the rules determining 
the interactions between pairs of myosin molecules and 
multiple myosin-binding sites on actin filament, so 
called target zones. Daniel et al. (1998) formulated a 
spatially explicit model of interaction for only two fila-
ments, defining that binding is only possible at collin-
ear sites. This approach was extended by Chase et al. 
(2004) to a 3-D lattice of three myosin filaments inter-
acting with 11 actin filaments and with binding re-
stricted to collinear sites. Taking into account only 
collinear sites provides for an unrealistically low num-
ber of bound cross-bridges. To overcome this problem, 
we proposed a more comprehensive approach (Smith 
et al., 2008) in a spatially explicit model of muscle con-
traction that defines the rules of actin–myosin interac-
tions in the filament lattice of the half sarcomere. In 
this approach, we introduced longitudinal and azi-
muthal (Steffen et al., 2001; Smith et al., 2008) selec-
tion rules in a 3-D sarcomere lattice for mapping heads 
to target zones of adjacent sites on actin. This method-
ology yielded a more realistic number of bound cross-
bridges and magnitude of force per myosin filament 
(Smith and Mijailovich, 2008), but the overall approach 
was limited by the use of semi-probabilistic binding ki-
netics that did not account for the stochastic nature of 
myosin binding to actin and, therefore, could not pre-
cisely account for the numbers of myosin and actin spe-
cies entering the reaction.

To overcome the limitations of these earlier models, a 
better method to account for realistic matching of avail-
able myosin heads to actin-binding sites is needed. To 
this end, we have developed the computational plat-
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form MUS ICO (Muscle Simulation Code) as a tool that 
can be used by the muscle community to interpret ex-
perimental data, identify gaps in our current under-
standing, and provide information that can be used in 
the development of novel hypotheses and the design of 
critical new experiments to test them. The structure of 
MUS ICO allows quantitative assessment of the effect of 
variations in sarcomere geometry, incorporation of new 
models with kinetic and structural details of the actomy-
osin cycle, provide more detailed descriptions of thin 
filament regulation and provide new knowledge on the 
role of auxiliary muscle proteins in muscle functions. 
The platform explicitly incorporates the 3-D sarcomere 
structure with extensible actin and myosin filaments, 
along with various actomyosin cycles, thin filament reg-
ulation models, and protocols of biochemical and me-
chanical loading (Mijailovich, S.M., et al. 2007. 
Biophysical Society 51st Annual Meeting. Abstr. 155a; 
Mijailovich, S.M., et al. 2008. Biophysical Society 52nd 
Annual Meeting. Abstr. 404a; Mijailovich, S.M., et al. 
2009. Biophysical Society 53rd Annual Meeting. Abstr. 
201a). Fig. 1 B shows the modular structure of the MUS 
ICO platform, which permits various combinations of 
modules. The MUS ICO simulations can predict the spa-
tial positions and connectivity of sarcomeric proteins at 
the current sarcomere configuration, local and global 
mechanical forces, and energetics at any instant of time, 
taking into account the exact number of unbound myo-
sin molecules interacting only with unoccupied binding 
sites on actin filaments in their proximity. The modular 
structure of the platform permits incorporation of the 
newest findings in a particular module without need for 
any change of other components and, therefore, pro-

vides a quick way to implement and test the implica-
tions of new hypotheses or findings. These may include, 
for example, the packing of myosin heads onto the 
thick filament backbone or the role of MyBP-C.

In this first paper, we focus on one very important as-
pect of this modeling approach: we quantitatively assess 
how the concentration ratio of tethered molecules and 
their ligands affect predictions of classical muscle con-
traction experiments. We compare the predictions of a 
spatially explicit stochastic model of muscle contraction 
(MUS ICO) that takes into account the interaction of 
each myosin head with a few nearest binding sites on 
actin in the 3-D sarcomere lattice and those of mass ac-
tion models that take into account only axial strain de-
pendence and neglect the discrete positions of myosin 
heads and the sites on actin. To illustrate the differences 
between these models, we compared the two simplest 
models proposed for cross-bridge kinetics: (1) the two-
state A.F. Huxley 1957 model (Huxley, 1957) and (2) a 
three-state model including a power stroke (Duke, 
1999). The same state transition rates are used for both 
the mass action models and in the new stochastic for-
mulation in the 3-D sarcomere lattice. This comparison 
allows determination of the effects of the distortion of 
interacting molecules on biochemical reactions, i.e., 
modulation of actomyosin cycle state transition rates by 
the imposed geometrical constraints of tethered myosin 
molecules and the accessibility of binding sites on 
actin filament.

This is the first step toward using MUS ICO to build a 
comprehensive multiscale model of a contracting 
multi-sarcomere structure or a myofibril. However, for 
simplicity and without loss of generality, here we limit 

Figure 1. Sliding filament models of muscle contraction interconnect the actomyosin ATPase cycle, thin filament regulation, 
and the structural arrangement of myosin and actin filaments into the sarcomere lattice. These models of various levels of 
complexity predict the dynamic response of muscle to Ca2+ activation and external boundary loads. (A) The simulations of classical 
muscle experiments follow the experimental protocols, including Ca2+ activation and force or length as inputs, and predict length or 
force along with muscle stiffness and ATPase. These models are typically designed to address a specific scientific problem. (B) The 
modular structure of the MUS ICO platform is designed to address many different scientific problems by adding new modules or 
adapting existing modules for the specifics for each problem. The flexible structure of the platform permits the use of various com‑
binations of actomyosin cycles, thin filament regulatory models, sarcomere structures, and protocols of biochemical and mechanical 
loading. The relevant parts of the model reported here are shown in black, whereas the parts reported elsewhere or planned for 
future studies are shown in gray.
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our current simulations to contractions of a half sarco-
mere. Even with this restriction, this typically corre-
sponds to 500 myosin and 1,000 actin filaments, which 
is approximately the number of filaments in a cross sec-
tion of a myofibril, and creates realistic fluctuations in 
force that we expect to find in muscle fibers. We demon-
strate that this 3-D lattice model is essential to predict 
the correct number of attached cross-bridges and hence 
the force per cross-bridge, both necessary first steps be-
fore going on to develop the next stage of the model.

M AT E R I A L S  A N D  M E T H O D S

Actin–myosin interactions in the filament lattice
Actin–myosin interactions in a sarcomere lattice incor-
porate the discrete lattice structure of interdigitated 
actin and myosin filaments, and the lattice structure var-
ies in different kinds of muscles (Luther and Squire, 
1980). In most muscle types, myosin and actin filaments 
are packed into a regular 3-D lattice with three myosin 
filaments around each actin filament and six actin fila-
ments around a myosin filament (Luther and Squire, 

1980). Each myosin filament is decorated with crowns 
of myosin dimers, spaced by ∼14.3 nm along the fila-
ment (Fig. 2). In vertebrate muscle, each crown consists 
of three myosin dimers with transverse orientations 
spaced by 120°, and successive crowns along the fila-
ment are rotated by 40° looking toward the Z-line. Thus, 
crown orientations are repeated every 42.9 nm; i.e., 
every fourth crown has the same orientation as the initial.

The actin monomers in a thin filament form a dou-
ble-stranded helical structure associated with the regu-
latory proteins tropomyosin and troponin with binding 
sites apart by ∼5.5 nm on each strand, with a half-period 
of ∼35.75 nm in the relaxed state (Bordas et al., 1999). 
The difference in periodicities between actin-binding 
sites (∼35.75 nm) and myosin crowns (42.9 nm) creates 
a vernier of longitudinal spacing between myosin heads 
and actin-binding sites. The 3-D sarcomere geometry 
with the extensible filaments and myosin-binding sites 
on actin filaments require both longitudinal position 
matching (Fig. 2 B) and angular matching in the azi-
muthal plane (Fig. 2, C and D). A myosin head and the 
closest binding site on actin form the most probable 

Figure 2. The 3-D sarcomere lattice is composed of thick and thin filaments arranged in an overlapping hexagonal lattice with 
a geometry that is consistent with the mean spacing measured in vertebrate striated muscle. (A) Myosin filaments extend from 
the central M‑band toward Z‑lines and actin filaments extending from Z‑lines forming a hexagonal arrangement in cross section. (B) 
The actin monomers are helically arranged in a double strand helical structure and orientationally favorable myosin‑binding sites 
on actin filament or target zones associated with myosin heads are shown in red. Each myosin molecule is attached to the trunk of 
myosin filament via the S2 rod and has two heads (S1 fragments) at the free end, but only one head per dimer is shown. The pairs of 
myosin heads form a triple helix along the myosin filament. The myosin heads are arranged in layers and at each layer form a “crown” 
with three pairs of heads. The crowns Lc = 1, 2, and 3 are axially separated by 14.3 nm and rotated by 40°, forming different angular 
arrangements with actin filaments, but only those that might interact with the actin filament are shown. In the axial direction, each 
pair of heads and multiple binding sites (target zones) on surrounding actin filaments form a large number of arrangements defined 
by the relative axial distances, x, between the unstrained position of the myosin head or cross‑bridge and the nearest actin‑binding 
site, and azimuthal angles α and β as defined in Fig. 4. (C) The hexagonal sarcomere lattice with 2:1 actin to myosin filament ratio 
shows in the azimuthal plane that up to three myosins can attach to each actin filament. The spatial arrangement of crowns Lc = 1 
interacting with six surrounding actin filaments is shown. (D) The heads in crowns Lc = 2 and 3 have different azimuthal spatial ar‑
rangement relative to binding sites on the actin filaments displayed by azimuthal angles α and β.
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pair of these molecules that can create a cross-bridge 
interconnecting actin and myosin filaments. The con-
cept of matching and realignment of myosin heads and 
its binding sites on actin in a compliant filament sarco-
mere lattice was first introduced in a Monte Carlo 
model by Daniel et al. (1998) and represents the basis 
for the more comprehensive approach introduced below.

A spatially discrete 3-D model.  The model of 3-D sarco-
mere lattice (Fig. 2 A) is composed of thick and thin 
filaments arranged in an overlapping hexagonal lattice 
with a geometry that is consistent with the mean spacing 
measured in vertebrate striated muscle (Higuchi et al., 
1995; Millman, 1998). The minimal contractile unit can 
be considered as a myofibril. For a typical myofibril of 
1.2 µm in diameter, the number of myosin filaments is 
∼500–650, depending on interfilament distance d10 
(Millman, 1998). A myofibril runs the entire length of 
the muscle fiber and consists of a large number of sarco-
meres in series. In a half sarcomere, each myosin fila-
ment with ∼150 myosin molecules faces six actin 
filaments, where each actin filament has ∼360 myo-
sin-binding sites (∼260 active at maximum overlap) ar-
ranged in a double helix (Fig.  2  B). Each myosin 
molecule has two myosin heads. The kinetics of the two 
heads of the dimer can be modeled by assuming that 
they compete for sites from the same target zone (Smith 
and Mijailovich, 2008; Smith et al., 2008), but this pro-
cess is complex and beyond the scope of this paper. For 
simplicity, we consider here that only one myosin head 
is active at any one time and is denoted as a cross-bridge.

Even with this simplification, this model fully rep-
resents the contractile behavior of the 3-D filament lat-
tice unlike previously studied one-dimensional models 
(Huxley, 1957; Wood and Mann, 1981; Pate and Cooke, 
1989; Piazzesi and Lombardi, 1995; Smith and Geeves, 
1995a,b) where the discrete position of myosin heads 
and their binding sites on actin were ignored. The 3-D 
sarcomere structure is viewed as an array of thin and 
thick filaments connected by cross-bridges and other 
elastic elements (e.g., titin and MyBP-C) in a lattice net-
work and that all of these elements are represented as 
linear springs (Daniel et al., 1998) or beams if radial 
forces are taken into account.

For balancing only axial forces, the spring system is 
sufficient for obtaining the displacement field in any 
instant of time, assuming that the movement of the fila-
ments is restricted in both radial and azimuthal direc-
tions. However, radial constraints imposed on the lattice 
of intact muscle fibers through shrinking, osmotic swell-
ing, or by changes in muscle length may induce signifi-
cant radial forces on cross-bridges (Millman, 1998; 
Williams et al., 2012, 2013). In this case, the 3-D sarco-
mere structure should be represented by intercon-
nected beams in order to form a mechanically stable 
system. The resulting radial forces may also affect the 

strain dependence of cross-bridge kinetics and, there-
fore, overall muscle dynamics. In either case, the instan-
taneous equilibrium between actin and myosin filaments 
interconnected by cross-bridges is described as

  K  (  t )   u  (  t )    = F  (  t )   ,  (1)

where K(t) is a stiffness matrix that includes the elasticity 
of thick and thin filaments and attached cross-bridges, 
u(t) is the displacement vector of all myosin-binding 
sites along actin filaments and all myosin links to the 
backbone of the myosin filament, and F(t) is a vector of 
all external forces (load) and internal forces generated 
by the action of cross-bridges (e.g., power stroke). The 
number of these linear equations and, therefore, the 
unknown displacements is equal to the total number of 
all actin and myosin sites. If the actin and myosin fila-
ments are assumed to be homogeneous along the fila-
ment length, the number of linear equations can be 
significantly reduced by fusing all finite elements be-
tween two attached cross-bridges into a single element, 
i.e., taking in account only interconnected nodes on 
actin and myosin filaments by the cross-bridges. The 
stiffness matrix, K(t), is constantly changing as actomy-
osin bonds are created or disrupted. In addition, F(t) 
also changes during conformational changes in attached 
myosins. Thus, the matrices K(t) and F(t) must be up-
dated after any chemo-mechanical transition occurs in 
order to accommodate structural system changes caused 
by these transitions. The formulation and solution of 
these equations is obtained by standard finite element 
procedures for linear systems (Eq. 1) or an incremental 
procedure for nonlinear systems (Bathe and Mijailovich, 
1988; Mijailovich et al., 1993; Bathe, 1996; Kojic, 1996; 
Kojić et al., 1996; Mijailovich, S.M., et al. 1998. Biophys-
ical Society 42nd Annual Meeting. Abstr. A156).

Calculation of cross-bridge strain and the strain depen-
dent kinetics of actomyosin cycle.  The elasticity of myo-
sin molecules and thermal agitation define how far a 
given myosin head can move to reach actin-binding 
sites. The 3-D nature of myosin binding in the sarco-
mere lattice requires that myosin heads move not only 
axially but also azimuthally to reach actin monomers 
with the correct orientation (Squire, 1992). The dis-
crete nature of the myosin-binding sites in two helically 
arranged strands in each actin filament and the regular 
arrangement of myosin crowns along the myosin fila-
ments, each crown having three myosin molecules, 
form a large number of possible combinations of rela-
tive spatial positions between myosin heads and binding 
sites on the actin filament. These relative positions can 
be calculated from the coordinates of deformed actin 
and myosin filaments, where the deformation of the 
elastic filaments is obtained from the solution of Eq. 1 
for appropriate boundary conditions.
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In the 3-D sarcomere lattice, the relative distance be-
tween a myosin head and the adjacent binding site on 
actin is defined by four factors (Figs. 3 and 4): (1) the 
axial displacements along myosin and actin filaments, 
(2) the transverse distance between myosin and actin 
filaments,   d  M-A   =   2 __ 3    d  10  ,  (3) the angle α defining relative 
position of myosin to actin filament, and (4) the angle 
β defining how much a myosin head needs to turn to 
reach an actin monomer in the correct orientation 
(Figs. 3 and 4). These spatial distances and angles are 
essential information for formulation of the strain de-
pendence of the state transition rates, reflecting the dis-
crete geometric relationships between myosin heads 
and actin-binding sites.

In all sliding filament models hitherto, the strain de-
pendence of the actomyosin cycle has been prescribed 
only in the axial direction, except in Williams et al. 
(2012) where radial forces are also taken into account. 
We follow this approach for convenience of comparing 
sarcomeric contractions predicted by MUS ICO with 
mass action models, but in addition, we consider three 
other geometric factors, expressed as weight functions 
associated with myosin binding to actin in 3-D 
sarcomere lattice.

Let us start with the myosin binding step because my-
osin heads can interact with only one myosin-binding 
site on actin out of several reachable adjacent sites (tar-
get zone). From the solution of Eq. 1, at any instant of 
time, the displacements u(t) and positions of each myo-
sin molecule XM(t) and binding site on the actin fila-
ment XA(t) in the deformed sarcomere configuration 
are known. In order for a myosin head to reach the ad-
jacent binding sites on actin filament, the elastic compo-
nent of a cross-bridge needs to be strained depending 
on relative position of a myosin head (cross-bridge)   X  M  m    
(  t )     and adjacent binding sites on actin   X  A  n+1   (  t )   ,  where 
superscripts m and n + 1 denote a myosin molecule and 
the adjacent sites on actin, where l = 0, 1, 2, …, (  ℒ  a    − 1) 
is an index of accessible sites on actin in neighborhood 
of n, respectively. The strain vectors for   ℒ  a    adjacent 
binding sites on actin reachable by myosin m are   x  m  l    (  t )    =  
X  A  n+1   (  t )    −  X  m    (  t )   .  Here,   x  m  l    (  t )     has four components: the 
axial strain   x  m  l  ,  the radial spacing between centers of 
actin and myosin filament   d  m  l    and the relative angles   α  m  l    
and   β  m  l  .  Note that for each myosin molecule m there 
would be   ℒ  a    binding sites on actin in the neighborhood 
of m.   ℒ  a    associated sites on actin can be located on one 
or two actin filaments, depending on the angle   β  m  l   ;  
thus,   d  m  l    can include multiple dM-As, one for each associ-
ated actin filament. In mass action models, the strain-de-
pendent rate constants between actomyosin states, 
denoted as (kij), exclusively depend on the strain com-
ponent x, whereas all other components are ignored. In 
the stochastic 3-D sarcomere used here, we adapt the 
same approach, but for binding we calculate L rate con-
stants  k  (    x  m  l   )   .  These constants are further modulated by 

weight factors that take into account the lattice spacing 
between the filaments, dM-A, and the azimuthal angles α 
and β. The resulting   ℒ  a    binding rate constants per my-
osin molecule are then used for construction of binding 
probabilities for the stochastic process as explained 

Figure 3. Interaction between myosin heads and actin fila-
ments in 3-D is defined by the triple helical arrangement of 
myosin molecules along the myosin filament and the dou-
ble helix arrangement of monomers (myosin-binding sites) 
along actin filaments. The 3‑D geometry of myosin head bind‑
ing domains and binding sites on actin in a sarcomere requires 
both longitudinal position matching and angular matching in 
the azimuthal plane. (A) Each myosin head m can move from its 
un‑deformed position   X  M  m     along actin filament as the result of 
thermal agitation and reach a few neighboring binding sites on 
actin. The myosin binding domain is shown as a yellow oval at 
the tip of myosin head and binding sites on actin as bright blue 
circles. The range of axial movement is shown as a pale red bar. 
The relative axial position of a myosin head (cross‑bridge)   X  M  m   
(  t )     and adjacent actin sites   X  A  n+l   (  t )   ,  where superscripts n + l and 
l denote index of an adjacent site on actin, and l = 0, 1, 2, …, 
(  ℒ  a    − 1) is the index of accessible sites on actin in the neigh‑
borhood of m, respectively. The maximum number of adjacent 
sites on actin reachable by a myosin head m is denoted as   ℒ  a   . 
To bind the site +l, the cross‑bridge, including S2 and a myosin 
head, needs to stretch or compress axially for distance   x  m  l .  (B) 
In the 3‑D sarcomere lattice, the actin and myosin filaments are 
separated by distance dA−M and sites on actin filament (strand) 
are at an azimuthal angle β. In addition, a cross‑bridge needs 
to turn from its equilibrium position by an angle α to reach an 
actin filament that is not aligned with its equilibrium position. 
For precise calculations of the angles, it is necessary to know 
the myosin equilibrium angular positions θm, angular position 
of site on actin filament θa, and diameters of myosin and actin 
filaments 2rm and 2ra, respectively. The angular range of move‑
ment is denoted as a pale red arc around the actin filament.
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below. To match the overall binding flux in mass action 
models, the binding rate distribution is scaled down by 
the factor fsk, which takes into account the mean num-
ber of sites on actin reachable by each cross-bridge for 
the prescribed strain-dependent binding rate function.

Cross-bridge rate kinetics
The modular structure of the computational platform 
MUS ICO can accommodate many different actomyosin 
cycles. To quantitatively assess the effect of the con-
strained interaction of myosin and actin in the sarco-
mere lattice, we consider, without loss of generality, the 
two simplest cross-bridge models: the two-state A.F. 
Huxley 1957 model (Huxley, 1957) and the minimal 
three-state model that can predict fast tension tran-
sients (Huxley and Simmons, 1971; Ford et al., 1977). 
The same kinetic models of myosin binding and the 
state transition rate constants are used in both mass ac-
tion kinetics and stochastic simulations of the 3-D spa-
tially explicit model.

The two-state A.F. Huxley 1957 model.  The two-state 
A.F. Huxley 1957 model has only two states: detached 
when the heads can freely move and attached when a 
myosin head is attached to actin and can only move with 
actin. The state transition rate constant between the de-
tached and the attached sate is defined as kf(x) = kf1x/h 
in range 0 ≤ x ≤ h, where kg(x) = kg1x/h for h ≥ x ≥ 0, 
kg(x) = kg2 for x < 0, and kg(x) = fZah·kg2 for x ≥ hZah, 
where x is the axial component of cross-bridge strain, h 
is the range for positive probability of attachment (Hux-
ley, 1957), and fZah is the Zahalak factor (Zahalak, 1986), 

which accounts for higher detachment rates during 
lengthening for cross-bridges stretched more than hZah.

Three-state model with power stroke.  The minimal 
model capable of predicting transients during isotonic 
shortening (Lombardi et al., 2004) and the T1 − T2 tran-
sition (Huxley and Simmons, 1971; Ford et al., 1977) 
must have at least three states, including a swinging 
lever arm step or power stroke. For simplicity, we use 
here a three-state actomyosin cycle (Fig.  5) similar to 
that proposed by Duke (1999) and Daniel et al. (1998). 
These two models differ only in the prescribed strain 
dependence of the state transition rates that are in a 
large degree arbitrary and designed to fit the experi-
mental data. In Fig. 5 A, we outline a more complete 
six-state model that includes all essential steps: binding 
to actin, the power stroke, d, associated with Pi release, 
the ADP release stroke, δ, ATP binding and cross-bridge 
detachment, and M.ATP hydrolysis, but for simplicity, 
we can reduced it to the three-state model by combin-
ing the states A.M.ADP, A.M, and A.MT together as 
strongly attached post-power stroke states and M.ATP 
and M.ADP.Pi together as detached states. The six-state 
scheme is illustrative in constructing effective state tran-
sition rate after combining the low populated states. Be-
cause the forward rates are very fast, the equivalent 
forward rate is set to be limited by ADP release and the 
reverse rates are negligible because they are very slow. 
In addition, from the solution data, it can be expected 
that the binding rate could be limited by rate hydrolysis 
of M.ATP, but in practice, this step is irrelevant because 
the second myosin head is most probably already in the 

Figure 4. Azimuthal weight factors 
Cβ and Cα of myosin binding in 3-D 
sarcomere lattice. (A) When myosin 
heads in Crown 1 are directly aligned 
with three actin filaments, then Cα = 1 
and Cβ weights the azimuthal departure 
of a myosin‑binding site on actin fila‑
ment from the plane passing through 
myosin and actin longitudinal axes. The 
angle β is a function of the axial depar‑
ture from perfect matching, ξ, resem‑
bles the preference for myosin heads to 
bind to favorably oriented sites on the 
actin filament similar to the observed 
distributions of bound level in single 
molecule studies (Simmons, R.M., et 
al., 2001. Biophysical Society 45th An‑
nual Meeting. Abstr. 80a; Steffen et al., 
2001). (B) When myosin heads are not 
directly aligned with the surrounding 
actin filaments, such as with Crowns 2 
and 3, the weight factor Cα takes into 
account the departure by the angle α 
from perfect alignment between the 
heads on the crown and the reachable 
actin filaments.
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M.ADP.Pi state and available for binding after the first 
head of the cross-bridge detaches.

The physics behind models of strain-dependent ther-
mally activated chemical reaction rates originates from 
the transition-state theory (Eyring, 1935; Glasstone et 
al., 1941), as updated by Kramers (1940). To logarith-
mic accuracy, the rate of a reaction is limited by the en-
ergy barrier presented by the point of highest Gibbs 
energy on the reaction path. The general form of the 
state transition rates in models with a power stroke is 
formulated by Hill (1974) as the ratio of forward to 
backward rates that must satisfy Gibbs’ thermo-
dynamic identity

   K  ij    (  x )    ≡  k  ij    (  x )    /  k  ji    (  x )    =  e   −  [   G  j    (  x )   − G  i    (  x )    ]   / k  B  T   (2)

in terms of the Gibbs energies of the initial and final 
states, including the elastic strain energy derived from 
the cross-bridge tension (Hill, 1974; Wood and Mann, 
1981). Here, Kij(x) is the equilibrium rate constant be-
tween states i and j, and each forward or backward rate 
constant Kij(x) is composed of a strain-independent 
rate   k  ij  o  ,  which, in principle, is the rate observed in a 
solution-kinetic experiment under the same conditions, 
and an x-dependent, i.e., axial strain-dependent, func-
tion that is equal to 1 when the molecules 
are not tethered.

The functions for the free energy of the three states 
(Fig.  5  B) in the simplest form, after setting the un-
bound state energy 0, are defined as (Duke, 1999):

   G  1   = 0  (3a)

   G  2   = − Δ  G  bind   + κ   x   2  / 2  k  B   T  (3b)

   G  3   = − Δ  G  bind   − Δ  G  stroke   + κ  (  x + d )        2  / 2  k  B   T,  (3c)

where −ΔGbind is reduction in free energy caused by my-
osin binding to actin, −ΔGstroke is a large (negative) 
change in chemical free energy associated with Pi re-
lease, κ is the elasticity of the cross-bridges in pN/nm, 
kB is the Boltzmann constant, T is absolute temperature 
in °K, and d is displacement of the lever arm after carry-
ing out the power stroke, i.e., the length of the 
power stroke in nm.

From Eqs. 2 and 3, the forward and backward state 
transitions rate constants are defined as follows: For the 
reaction M.ADP.Pi  ⇄  A.M.ADP.Pi, the activation energy 
is supplied by thermal (Brownian) fluctuations. Follow-
ing the approach of Kramers (Kramers, 1940; Papoulis, 
1991; Hunt et al., 1994; Daniel et al., 1998), the binding 
rate in quadratic form is derived from a Langevin type 
of equation balancing thermal fluctuations, elastic re-

Figure 5. Minimal model of the ATPase 
cycle. (A) Actomyosin cycle and correspond‑
ing structural states of myosin head consist 
of at least six biochemical states. The mini‑
mal three‑state model consists of a detached 
state 1, weakly bound state 2 (or A.M.D.Pi), 
and strongly bound post‑power stroke sate 3 
(or A.M.D). The state 1 groups transition be‑
tween A.M, A.M.ATP, M.ATP, and M.ADP.Pi 
states (gray box) to a single transition where 
forward rate is dominated by the rate of ADP 
release and backward rate by reverse attach‑
ment from M.ATP to A.M.ATP. These rates 
are slowest forward and backward rates. The 
compounded state transition includes ADP 
release, ATP binding, dissociation of myosin 
from actin, and ATP hydrolysis step. Note that 
the lever arm must move for displacement δ 
in order to open the nucleotide pocket and 
allow ADP release. (B) Free energy land‑
scapes for myosin ATPase states of the three‑
state model. The detached state M.ATP is 
only shown for reference. The free energy of 
detached states is independent of strain, x, 
whereas the free energy of attached states is 
quadratically proportional to x if cross‑bridge 
stiffness is constant.
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storing, inertial, and viscous drag forces. The elastic el-
ement of the detached myosin molecule fluctuates 
thermally, and the strain-dependent binding rate varies 
with the axial cross-bridge strain, x:

   k  12    (  x )    =  k  bind      e   −κ x   2 /2 k  B  T ,  (4a)

where kbind is the overall binding rate of M.ADP.Pi to 
actin, κ is cross-bridge stiffness, T is absolute tempera-
ture, and kB is Boltzmann’s constant. The reverse reac-
tion occurs at a constant rate:

   k  21   =  k  unbind   =  k  bind    e   −Δ G  bind   . 

The two attached states A.M.ADP.Pi and A.M.ADP 
can be assumed to be in dynamic equilibrium if [Pi] > 0 
because the forward/backward reaction between them 
is rapid. Also Pi release is accompanied by a large (neg-
ative) change in chemical free energy ΔGstroke. Thus, to 
define the population of these states in some cases, it 
suffices to specify the ratio of forward and reverse rates 
(i.e., ratio of the relative probabilities of these post- and 
prepower stroke states) that also includes the change in 
elastic energy of the power stroke:

   K  23    (  x )    ≡  k  23    (  x )    /  k  32    (  x )    =  e   −  [  Δ G  stroke  +κ d   2 /  (    2x _ d  +1 )    ]   / k  B  T .  (4b)

The exponential forms of the forward and backward 
rate constants can reach huge values and cause numeri-
cal problems in calculating the transition probabilities. 
In these cases, it is convenient to cap the maximums of 
forward and backward constants and still preserve the 
equilibrium constants (Smith and Mijailovich, 2008). 
For example, for a prescribed   k  23  cap   and   k  32  cap ,  the cross-
bridge strain where the capping of large exponentially 
growing rate constants is   x  o   = − 0.5d −   [  Δ  G  stroke   + ln   (   k  23  cap  /  
k  32  cap  )    ]    k  B   T /   (  κd )   ,  and the forward rate is

   
 k  23   =  k  23  cap    for  x ≤  x  o     
 k  23   =  k  23  cap   e   −kd  (  x− x  o   )   / k  B  T    for  x >  x  o  .

  

The backward rate, k32(x), can be simply calculated as 
the ratio of K23(x) (Eq. 4b) and k23(x).

For strain-dependent ADP release (i.e., A.M.ADP → 
A.M), the difference between the initial and final strain 
energies gives the forward rate as

   k  31    (  x )    =  k  ADP  o      e   −  [    (  κδd/2 k  B  T )     (  2x/d+1 )    ]    ,  (4c)

where δ is the displacement that the lever arm must 
move to open the nucleotide pocket and allow ADP re-
lease, and   k  ADP  o    is the rate of ADP release when the elas-
tic element is relaxed. ATP binding is much faster than 
the reverse rate k13, and thus any strain dependence 
caused by the conformational change has almost no ef-
fect. It is therefore reasonable to take k13 to be 
small and constant.

Monte Carlo simulations of rate dependent 
stochastic processes
In the stochastic model, we used the standard Metropo-
lis algorithm where a kinetic transition in time step Δt is 
implemented when a random number in (0, 1) lies in 
the range (0, kΔt), where k is the first-order transition 
rate constant. This algorithm generates a Markov pro-
cess if kΔt ⪡ 1, so that at most one transition occurs per 
Monte Carlo time step in a single subsystem, here con-
sidered as one myosin filament and the associated actin 
filaments. Thus, Δt must be less than the inverse of the 
fastest rate constant of the system, kmax, and in practice 
kmaxΔt < 0.001 was required to achieve satisfactory statis-
tics. The transition rates between actin and myosin 
states are applied to Nmh myosin heads per myosin fila-
ment. For all myosin heads, Nmh, at any instant, is as-
signed its state in the actin–myosin cycle, whether it is 
free or attached to actin. For attached myosin heads, it 
is also assigned the index of the myosin-binding site on 
actin and also which strand on the actin filament (1 or 
2) it is bound to. In general, both myosin heads of a 
dimer can be active, but in skeletal muscle, it is occa-
sionally found that both heads attached to different 
actin filaments. For simplicity, we consider here that 
only one head of dimeric myosin is active and interacts 
with actin at a time. Further, we also assume that the 
active myosin head, usually denoted as a cross-bridge, 
can bind to any one of the reachable discrete binding 
sites on actin filament (∼5.5 nm apart, following the un-
loaded actin spacing). The reachable sites can be on 
one or two actin filaments depending on angle α and 
one or both strands on each filament depending on 
angle β (see Figs. 3 and 4).

Each active myosin head (cross-bridge) can be at time 
t in only one state. During a small time step, each myo-
sin head can change its state to neighboring states de-
fined by the actin–myosin cycle or stay in its current 
state. The Monte Carlo drawing defines whether transi-
tions between actomyosin states will occur or not. In the 
computational algorithm, for each myosin (cross-
bridge), we calculate probabilities for each possible 
change of its current state to neighboring states as P = 
kΔt for each transition, and complement probability up 
to 1 is attributed to no change of the state. Because each 
myosin attaches to one of the   ℒ  a    sites on actin in its 
proximity, the probability of myosin m to attach to lth 
site of   ℒ  a    available is

   P  l/ L  a    
m   =  P  l/1  m     ∏ 

j=1, j≠  (  l+1 )   
  

 ℒ  a  
     (  1 −  P  j/1  m   )   , 

where   P  j/1  m    is probability of binding cross-bridge m to a 
single site when it is the only possibility.

In the Huxley 1957 model (Huxley, 1957) there are 
only two states, attached and detached. In this case, only 
one probability for the change of state is assigned. For 
the myosin heads in attached state, the probability of a 
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cross-bridge to detach during time step Δt is equal to 
Pdet = ka(x)Δt. For myosin heads in the detached state, 
the attachment probability is shared between all reach-
able states defined as 

   P  att   =   (   ∑ l=0   l  max       P  att    (   x  m  1   )    )   , 

where   P  att    (    x  m  l   )    =  k  f  *   (    x  m  l   )    ⋅  C  α    (    α  m  l   )    ⋅  C  β    (    β  m  l   )   Δt  and   k  f  *  =  
k  f   /  f  sk  .  Because Patt is the sum of probabilities of attach-
ing myosin heads to each of reachable sites l = 1 to lmax, 
the equivalent axial strain–dependent binding rate   k  f  *   is 
set to provide the same flux as the mass action binding 
rate kf. The scaling factor, fsk, decreases the magnitude 
of kf at each x by a mean number of reachable binding 
sites to myosin heads. The weight factors Cα and Cβ are 
associated with the azimuthal position of actin filaments 
in the sarcomere lattice relative to the myosin head, 
angle α, and azimuthal angle of myosin-binding site on 
actin β (Figs. 3 and 4).

Similarly, in the three-state model, the probabilities of 
changing state are constructed in the same way, but each 
state can transition to two neighboring states; therefore, 
the transitions from the attached states (2 and 3) are de-
fined by probabilities to P21 = k21(x)Δt and to P23 = k23(x)
Δt for the pre-stroke state 2 (A.M.ADP.Pi) and to P32 = 
k32(x)Δt and to P31 = k31(x)Δt for the post-stroke state 3 
(A.M.ADP). The transition states from the detached 
state M.ADP.Pi include two attachment probabilities P12 
and P13 associated with axial strain–dependent rates with 
multiple binding sites on actin,   k  12  *    (   x  m  l   )    =  k  12    (   x  m  l   )    /  f  sk    and   
k  13  *    (   x  m  l   )    =  k  13    (   x  m  l   )    /  f  sk  .  The scaling factor fsk and weight fac-
tors Cα and Cβ are defined in the same way for all models.

For each cross-bridge, we use one Monte Carlo draw-
ing to define whether the cross-bridge remains in its 
current state or it will change its state into one of the 
possible states within current time step Δt. For each 
cross-bridge, the probability in the range from 0 to 1 is 
divided into probability bins, Pij, in a specified order, 
including the set of probability bins associated with a 
cross-bridge changing state and a bin associated with 
the probability of remaining in the current state. De-
pending on which bin the drawn random number falls 
in, the fate of a particular cross-bridge is defined and set 
for the following time step. The time step, Δt, is set to 
be sufficiently small such that at most only one transi-
tion can occur per a subsystem so interference between 
multiple transitions within a single subsystem is avoided 
and between the systems is negligibly small.

Once the Monte Carlo drawing is completed over all 
cross-bridges, the connectivity matrix, stiffness matrix, 
internal (active cross-bridge) forces, external (bound-
ary) forces, and constraints are updated, the iterative 
solution of the equilibrium equation provides the con-
figuration at time t + Δt. The stepwise process is re-
peated until the maximum number of prescribed time 
steps is reached.

For simplicity and without loss of generality, all simu-
lations presented here are performed at full calcium 
activation ([Ca2+] ≅ 2.5 × 10−5), where the thin filament 
proteins troponin and tropomyosin are assumed to 
have a negligible effect on the cross-bridge cycle (Mijai-
lovich, S.M., et al. 2015. Biophysical Society 59th An-
nual Meeting. Abstr. 337a). For these simulations, 
therefore, we used a version of MUS ICO without the 
calcium regulation module.

A probabilistic formulation of cross-bridge kinetics in 
mass action models
The mathematical formulation of sliding filament sys-
tem at the level of a single myosin head is given in terms 
of the state probability density function, pi(x,t), i.e., the 
probability of the head being attached to the thin fila-
ment (actin) at a binding site displaced by distance x at 
time t (Eulerian formulation). The subscript i identifies 
the particular actomyosin state and runs from 1 to the 
total number of states nn used in the cross-bridge cycle. 
The myosin may be detached or bound to actin. For 
simplicity, in the mass action simulations presented 
here, we simplified the spatially distributed elasticity of 
the filaments into a (discrete) series elastic component 
and consider myosin binding to actin as in the inexten-
sible filament model. Note that in the MUS ICO simula-
tions, myofilament, and cross-bridge compliances are 
treated explicitly as a function of position along the fil-
aments. The strain-dependent state transitions between 
myosin states are governed by conservation laws ex-
pressed as field equations. In vector form, this system of 
partial differential equations becomes

  Dp  (  x, t )    / Dt = M  (  x )   p  (  x, t )   ,  (5)

where M(x) is the state transition rate matrix. The ma-
trix size, n × n, is defined by the number of states in the 
actomyosin cycle, and, in general, this matrix in 3-D de-
pends on the relative spatial position of unstrained my-
osin heads and their binding sites on actin, x∈(x, r, α, 
β). We consider here only the axial strain dependence 
(exclusively of x). In this case M(x) ≡ Mx(x), where the 
components of Mx(x) are built from rate constants 
kij(x) for the transition from state i to state j. The diago-
nal elements of matrix Mx(x) are defined as

   ℳ  ii    (  x )    = −  ∑ i=1  n     k  il    (  x )    δ  il  , 

where δil = 1 if i ≠ l and 0 otherwise; and off diagonal 
terms as   ℳ  ij   (x)   = kjiδij, where δij = 1 if i ≠ j and 0 other-
wise. The rate constants kij(x) have finite positive values 
(>0) only if transition between states i and j are possible, 
otherwise they are equal to 0. Each component of the 
vector p(x,t) is the probability of finding the myosin 
head in one of its n states at time t and at strain x (Hux-
ley, 1957). The operator D/Dt is the material derivative  
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∂ / ∂ t − v  (  t )    ∂ / ∂ x, , where v(t) is the shortening velocity of 
the actin filament relative to myosin filament. Note that 
for simplicity, here we assume uniform shortening ve-
locity along the filaments, i.e.,  ∂ v / ∂ x   = 0.  This is 
achieved, without loss of generality, by including a se-
ries elastic component equivalent to the elasticity of the 
filaments and apparently rigid filaments in the overlap 
region where myosin interacts with actin. The normal-
ized shortening velocity, V(t), denotes v(t) in half-sarco-
mere lengths per second.

The state transition matrix Mx(x), formed exclusively 
from rate constants kij(x), is singular because the sum of 
the elements in each column is equal to zero, i.e., deter-
minant    |    M  x    (  x )    |    = 0.  Thus, to find a unique solution of 
Eq. 5, it is necessary to replace one row in Mx(x) by a 
constraint equation. In the original Huxley 57 model 
(Huxley, 1957), the constraint is that at any instant of 
time t, the sum of all state probability densities at partic-
ular x is equal to 1, i.e.,

   ∑ i=1  n     p  i    (  x, t )    = 1. 

This constraint was later used in almost all mass action 
models (Hill, 1974; Pate and Cooke, 1989; Smith and 
Geeves, 1995b,a; Mijailovich et al., 1996).

For Huxley’s two-state formulation, after setting up 
p1(x,t) as the attached state and p2(x,t) as the detached 
state and including the above constraint equation, the 
state transition matrix becomes:

   M  x    (  x )    =   [   
−  k  g    (  x )   

  
 k  f    (  x )   

  
1
  

1
   ]   ,  (6a)

and for the three-state model, after setting p1(x,t) as the 
detached state (M.ADP.Pi), p2(x,t) as the attached pre-
stroke state (A.M.ADP.Pi), and p3(x,t) as the post-stroke 
state (A.M.ADP), it becomes

   M  x    (  x )    =   
[

   
−  k  12   −  k  13  

  
 k  21  

  
 k  31  

    k  12    −  k  21   −  k  23     k  13     
1
  

1
  

1
   
]

   .  (6b)

Conservation of the number of cross-
bridges (myosin heads)
The assumption in mass action kinetic models that the 
sum of all state probability densities, pi(x,t), at any x is 
equal to 1 does not guarantee that the sum of probabil-
ities of all states of myosin within actin–myosin cycle or 
sum of all actin states add to 1. Thus, if the sum of all 
state probabilities is not equal to 1, one cannot pre-
serve the numbers of species entering or leaving the 
reaction. Piazzesi and Lombardi (1995) were the first 
to attempt to partially address this problem, and their 
approach is successfully implemented in the Hai and 
Murphy four-state model of smooth muscle contrac-
tion (Mijailovich et al., 2000) as an essential condition 
to preserve the number of myosin species (i.e., 
cross-bridges).

In mass action kinetic models, we do not track each 
cross-bridge, but rather the binding of the population 
of cross-bridges that can reach actin-biding sites within 
a region  𝓡 . If there is no relative movement between 
actin and myosin filaments, i.e., in truly isometric con-
ditions, all bound myosins are within the region  𝓡 , 
forming probability density distributions, pi,att(x,t), and 
the detached probabilities complement these probabil-
ity density distributions to 1 at any x according to the 
original Huxley assumption (Huxley, 1957). Because 
the sum of pi(x,t) at any x is equal to 1, then the sum of 
all probabilities of the myosin states,

  Pi =   (    ∫ ℛ  
 
     p  i    (  x, t )   dx )    /  𝓁  ℛ  , 

is also equal to 1. Here   𝓁  ℛ    is equal to the length of the 
binding region  𝓡 . In the original Huxley 1957 formula-
tion, the region  𝓡  is defined as 0 ≤ x ≤ h, and the prob-
ability of myosin to be attached in fully activated muscle 
at steady-state is equal to Patt = kf/(kf + kg). The probabil-
ity of a cross-bridge to be in the detached state is equal 
to 1 − Patt. Piazzesi and Lombardi (1995) in their multi-
state model defined the biding region  𝓡  to be within 
binding range dictated by binding and detachment 
strain–dependent rate functions. Their approach is 
equally applicable under isometric conditions to other 
multistate models, but the proportion of bound and un-
bound myosins strongly depend on the width of the my-
osin-binding region   𝓁  ℛ   . Thus, defining the region   𝓁  ℛ    
needs to be done carefully.

The above formulations are correct for the isometric 
case, but when shortening or lengthening is allowed, 
they are not because some myosin heads are drawn away 
from the attachment region  𝓡  while still attached, and 
at the same time, some unoccupied binding sites on 
actin are moved within  𝓡  (Mijailovich et al., 2000). Con-
sequently, the number of available myosins for binding 
within region  𝓡  is less than a sum of all attached states,

  1 −  ∑   n  s      p  i,att    (  x, t )   , 

for the number of the attached myosin heads that were 
drawn outside of region  𝓡 . Here ns is number of states 
in the actomyosin cycle. Following the approach of Pi-
azzesi–Lombardi (Piazzesi and Lombardi, 1995; Mijai-
lovich et al., 2000), we define ξ as a local coordinate of 
the binding site on actin available in  𝓡  (thus 0 ≤ ξ ≤   𝓁  ℛ   
). We also assume that after detachment a cross-bridge 
rapidly (of the order of a microsecond) regains its orig-
inal configuration; thus, the myosin head can reattach 
to one site on actin in  𝓡 , and therefore all detached 
states, pi,det(x,t), are also only within  𝓡 . Thus, all of the 
heads detaching at a given x beyond region  𝓡 , regain 
the position, within  𝓡 , by shifting the change of Δpi,at-

t(x,t) to Δpi,det(ξ +  n  𝓁  ℛ  , t ), where subscripts att and det 
denote the attached and detached states, where   𝓁  ℛ    is 
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the length of binding region  𝓡  and also taken as a spa-
tial period and   n  ℛ    is the maximal number of times the 
attached cross-bridge has exceeded one boundary of  𝓡  
in the same direction, taking values negative for short-
ening and positive for lengthening. Thus, the require-
ment that the sum of the probability densities over all 
possible states includes translation of detached states, 
for all ξ, according to the condition

   ∑ 
 n  s  
        p  i,att    (  ξ, t )    +  ∑ 

 n  s  
      ∑ 

 n  R  
        p  i,det    (  ξ + n  𝓁  ℛ  , t )    = 1 . 

This condition ensures that the number of cross-
bridges (myosins) is conserved, but the number of de-
tached states does not precisely reflect the number of 
the unoccupied myosin-binding sites on actin. The 
correct number of unoccupied sites on actin can only 
be achieved by spatially explicit models 
such as MUS ICO.

Model parameters
Sarcomere geometry and myofilament elasticity.  In the 
frog (sartorius) muscle 3-D sarcomere lattice, actin fila-
ments are ∼1 µm long, having 182 monomers in a 
strand or 364 in total (Burgoyne et al., 2008). The actin 
monomer spacing is 2.735 nm and a half-period of one 
strand is 35.55 nm (Huxley et al., 1994; Wakabayashi et 
al., 1994; Prodanovic et al., 2016). The length of a myo-
sin filament is ∼1.58 µm, having 50 crowns, i.e., 150 my-
osin molecules per half-thick filament, with crown 
spacing of 14.3 nm (Luther et al., 2008). The sarcomere 
slack length is set at ∼2.175 µm, with ∼0.7 µm actin–my-
osin overlap. The lattice interfilament spacing is d10 = 
37 nm, recalculated to the above sarcomere length 
from Matsubara and Elliott (1972) and Millman (1998), 
the actin radius is ra = 3.5 nm and myosin radius is rm = 
7.8 nm (see Table S1 for complete set of model param-
eters). For simplicity, we limited all stochastic simula-
tions to a half sarcomere with 500 myosin and 1,000 
actin filaments. This number of filaments is comparable 
with the number of filaments in a cross-section of a typ-
ical myofibril and provides sufficient statistical averag-
ing without running the simulation multiple times.

Actin and myosin filaments are extensible with fila-
ment moduli (elastic modulus times cross-section 
area) derived from x-ray diffraction or direct measure-
ment: for actin, Ka = 0.65 × l05 pN; and for myosin Km 
= 1.32 × 105 pN (Huxley et al., 1994; Kojima et al., 
1994). The elasticity of the filaments in mass action 
models is, for simplicity, lumped into a series elastic 
component normalized to a subsystem containing one 
myosin and two actin filaments. The stiffness of the se-
ries elastic component in the Huxley and Huxley PL 
models, equivalent to the actin and myosin filament 
elasticity in MUS ICO, is   K  SE  Hux   = 144 pN/nm; and for 
Duke and Duke PL models is   K  SE  Duke   = 198 
pN/nm (Table S1).

Cross-bridge model parameters.  To contrast the inclu-
sion of the geometric and steric constraints of the acto-
myosin cycle in the explicit 3-D sarcomere lattice versus 
mass action kinetic models, we compared the simula-
tions of classical mechanical experiments in muscle 
using the two simplest cross-bridge models: (1) the two-
state A.F. Huxley 1957 model (Huxley, 1957) and (2) a 
three-state, including a power stroke, model similar to 
that proposed by Duke (1999) (see also Table S2).

Cross-bridge model parameters: A.F. Huxley 1957 model 
parameters.  For simplicity, we used here the original pa-
rameters of A.F. Huxley’s model: the attachment and 
detachment kinetic rate constants are f1, g1, and g2 
equal to 43.3, 10, and 209 s−1, respectively. The myosin 
distortion displacement scale, h, was taken to be 15.6 
nm, as reported in Huxley’s original paper (Huxley, 
1957). For reaching experimentally observed lengthen-
ing maximum velocity, we included a Zahalak factor fZah 
= 1.8 for x > hZah = 15.6 nm (Zahalak, 1986). The Pi-
azzesi–Lombardi spatial period is   𝓁  ℛ    = h. In all simula-
tions, cross-bridge stiffness is taken to be κ = 0.58 pN/
nm, in order to match maximum isometric tension per 
myosin filament of ∼530 pN corresponding to the ten-
sion observed in frog skeletal muscle of 270 kPa.

Cross-bridge model parameters: Three-state model pa-
rameters.  According to the approach of Duke (1999), 
the state transition rate constants are as follows: for 
binding, the equilibrium constant is   K  bind   =  k  bind   /  
k  unbind   =  e   −Δ G  bind  / k  B  T  ≅ 20,  where ΔGbind = −3kBT and for-
ward rate constant at zero cross-bridge strain is kbind = 
170 s−1; for power stroke, equilibrium constant (Eq. 6b) 
is defined by ΔGstroke = −15kBT and power stroke d = 
10.6 nm; and for ADP release/detachment,   k  ADP  o    = 56 s−1 
and second power stroke δ = 0.9 nm. Because of the 
exponential forms in Eqs. 4b and 4c, the state transition 
rates can become very large and can generate numeri-
cal problems—they are capped to   k  23  cap   = 1,000 s−1,   k  32  cap   = 
100  s−1, and   k  31  cap   = 104  s−1. These values are chosen as 
optimal values to satisfy Monte Carlo statistics for time 
steps of the order of 1 µs. When the cap value is reached, 
the reverse rates are changed to decay exponentially to 
satisfy the equilibrium constant, Kij(x). In all simula-
tions, cross-bridge stiffness is taken to be κ = 1.3 pN/nm 
(as used by Duke [1999]) and the value for kBT = 4.14 
pN·nm at T = 300°K. The Piazzesi–Lombardi spatial pe-
riod is   𝓁  ℛ    ∼ 9.4 nm.

Normalization of isometric force.  The spatially explicit 
model in MUS ICO calculates the force in each actin 
and myosin filament, and the force is directly related to 
stochastic kinetics of the actomyosin cycle and the elas-
ticity of cross-bridges and myofilaments. The simula-
tions are done by setting up the initial conditions and 
letting the system evolve over time (for example, 1  s 
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with 10-µs steps). Because of the stochastic process of 
myosin interactions with actin, the forces in the myofil-
aments fluctuate in time, and each filament experiences 
somewhat different force. Overall, each simulation with 
500 myosin filaments per a half sarcomere provides not 
only sufficient averaging of the muscle fiber tension but 
also fluctuations in force in each myosin and actin fila-
ment. It is important to note that these forces at any in-
stant of time are different and continuously change in 
time although the fully developed muscle fiber force 
under isometric conditions fluctuates very little.

The mean force per myosin filament, F, is shown in 
all graphs where one axis is force. In contrast, the force 
from mass action kinetic models cannot be directly ob-
tained from kinetic model parameters including the 
elasticity of cross-bridges and myofilaments. It is typi-
cally normalized by a factor that relates the integral of 
the equilibrium isometric cross-bridge force distribu-
tion and maximum isometric tension, To (Huxley, 
1957). In our plots, we show both the myofilament force 
and the isometric tension. The scales are related by a 
factor that takes into account how many myosin fila-
ments there are per unit of the fiber cross-sectional area 
(Linari et al., 1998). In intact fibers from frog skeletal 
muscle, the d10 lattice spacing is in the range of 36.0 to 
38.5 nm at a sarcomere length of 2.3 µm (Matsubara 
and Elliott, 1972; Millman, 1998), and the fraction of 
cross-section occupied by myofibrils as 0.83 (Mobley 
and Eisenberg, 1975). For spacing at sarcomere optimal 
length of 2.175 µm used in our calculations, the num-
ber of myosin filaments is ∼505 per µm2 of the muscle 
fiber cross section, and the mean force per myosin fila-
ment, Fo, is between 530 and 600 pN for corresponding 
muscle isometric tensions, To, between 270 and 300 
kPa, respectively. For simplicity, all force data are plot-
ted in terms of force per myofilament, F, and the scal-
ing relationship between the maximum isometric force, 
Fo, and maximum isometric tension, To, is displayed in 
the figure legends.

Normalization of the cross-bridge distributions.  Under-
standing of the complex muscle fiber response to activa-
tion and mechanical load challenges is rooted in the 
distribution of cross-bridges versus the strain of each 
cross-bridge and its actomyosin state. The differences in 
responses between different models for the same activa-
tion and mechanical protocols can also be explained by 
comparing the cross-bridge distributions. The distribu-
tion in a spatially explicit model such as MUS ICO can 
be represented as the frequency of cross-bridges in each 
actomyosin state within a bin of the prescribed width, 
Δxb, at the mean bin strain xb. Thus, these frequencies 
can be, after summing, related to the mean number of 
myosin heads in a particular state per myosin filament. 
The state probability density functions, pi(x,t), in mass 
action kinetic models are frequently denoted as distri-

butions of cross-bridge fractions in each state over a 
range of strains x at time t. An integral of an attached 
state probability density function represents the proba-
bility of a cross-bridge to be in that state. Thus, the 
problem is in defining the number of cross-bridges in 
detached states because the probability density func-
tions of these states cannot be integrated over the spec-
ified domain of x and therefore cannot be related to the 
fraction of the bridges in any particular state.

To compare the distributions between mass action ki-
netic models and MUS ICO, we need to limit the range 
of detached states. Integrating the distributions within 
these limits can provide the fraction of attached versus 
detached cross-bridges comparable with the ratio of 
number of attached versus number of detached cross-
bridges calculated from MUS ICO. Setting up these lim-
its is not simple and should be defined for each type of 
actomyosin cycle. Fully developed isometric tension is 
probably the best state for establishing the normal-
ization factors.

Because in different MUS ICO simulations we can use 
different numbers of myosin filaments, we adjusted the 
bin width so that the height of the bin represents the 
number of the cross-bridges in each attached state per 
myosin filament. The comparative plots of the attached 
cross-bridge distributions from MUS ICO and state 
probability distribution functions from the mass action 
kinetic models require the scaling factors for each acto-
myosin model used.

Normalization of the cross-bridge distributions: Huxley 
1957 model.  The distribution of attached cross-bridges 
at fully developed force calculated by the Huxley mass 
action kinetic model is defined as   p  bound  iso   =  f  1   /   (   f  1   +  g  1   )     
over the binding range 0 < x < h and as   p  unbound  iso   = 1 −  p  bound  iso  
.  Thus, limiting the detached states to the range 0 < x < 
h provides the fraction of attached cross-bridges that is 
proportional to the number of attached cross-bridges 
calculated from MUS ICO. This proportionality factor is 
used for calculating normalizing factor relating the fre-
quency of cross-bridges per bin to the probability den-
sity function in the same attached state.

Normalization of the cross-bridge distributions: Three-
state model.  The probability density distribution of two 
attached cross-bridge states at fully developed force is 
more complex than from the Huxley 1957 mass action 
kinetic model, and defining the equivalent detached 
state distribution is also much more complex. The 
problem with this actomyosin cycle model is that at fully 
developed isometric force, the distributions of bound 
states significantly differ in shape between the mass ac-
tion kinetic model and MUS ICO predictions. This 
problem is rooted in loose definitions of the detached 
state probability density function from mass action 
models. However, it can be resolved in part by defining 
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Piazzesi–Lombardi binding region length,   𝓁  ℛ   , using, 
for example, the data from MUS ICO simulations.

In addition, normalization of the distributions of the 
attached states requires special procedures, including 
determination of the proportion factor relating bin 
heights from MUS ICO simulations to the probability 
density distributions from mass action models. The scal-
ing of frequencies from MUS ICO simulations and prob-
ability density functions of each attached state is 
obtained from simulations of isometric force develop-
ment at 5 and 20 ms where the shape of pre- and post-
power stroke attached states distributions almost 
coincide. The distribution of the sum of bin heights of 
the two states is excellently fit by a modified Gaussian 
function (see Fig. S1). This same function also excel-
lently fits the sum of fractions of attached cross-bridge 
states. After normalization of the peaks, these two fitted 
curves almost coincide but only at early times during 
force development. The ratio of these peaks is used to 
scale the axis for the frequency distributions from MUS 
ICO simulations and the fraction of attached cross-
bridges from simulations from Duke and 
Duke PL models.

MUS ICO software environment and simulation details
The MUS ICO software has been developed as C++ ob-
ject-oriented application that includes LAP ACK linear 
algebra package and deal.II finite element library. Typi-
cal run times for these simulations depend on the num-
ber of actin and myosin filaments. For the simulation of 
500 myosin filaments over 1 s with a time step of 10 µs is 
∼20  h on the AEG IS04-KG grid site, consisting of 6 
nodes, each equipped with 2 AMD Opteron 6276 16-
core processors and 96 GB RAM, totaling 192 processors.

Online supplemental material
The supplemental text shows normalization of the 
probability distributions of the attached states. Fig. S1 
matches the scales of the number of attached cross-
bridges per bin from MUS ICO simulations to the frac-
tion of attached cross-bridges from the Duke mass 
action model prediction at 5 ms after the onset of iso-
metric force development. Fig. S2 shows transient veloc-
ities and cross-bridge distributions after quick release to 
isotonic force at F/Fo = T/To = 0.6 and 0.4. Fig. S3 shows 
three-state model predictions of transient velocities and 
cross-bridge distributions after a quick release to iso-
tonic force at F/Fo = T/To = 0.6 and 0.4. Fig. S4 shows 
two-state model predictions of velocities and distribu-
tions for shortening velocities of 63.5 and 215.5 nm/s 
(i.e., 0.04 and 0.133 of vmax) that correspond to MUS 
ICO velocities for F/Fo = T/To = 0.6 and 0.4, respec-
tively. Fig. S5 shows three-state model predictions of ve-
locities and distributions for shortening velocity of 259 
and 445 nm/s (i.e., 0.17 and 0.29 of vmax) that corre-
spond to MUS ICO velocities for F/Fo = T/To = 0.6 and 

0.4, respectively. Fig. S6 shows the cross-bridge distribu-
tions tQRel = 0+, 5,10, 20, 80, and 200 ms after a quick 
release to zero isotonic load for model, where black 
bars represent weakly bound cross-bridges and red bars 
the post-power stroke bound myosins (MUS ICO). Fig. 
S7 shows three-state model (Duke) predictions of the 
evolution of the cross-bridge distributions during T1 − 
T2 transitions after a quick decrease in length of 7.35 
nm. Table S1 lists values of key sarcomere lattice param-
eters. Table S2 lists values of key cross-bridge kinetic pa-
rameters and constraints.

R E S U LT S

The spatially explicit model implemented in the MUS 
ICO platform directly addresses the binding of myosin 
molecules to and detachment from actin in the sarco-
mere lattice. The simulations at any instant of time re-
cord all connections between myosin and actin and 
explicitly take into account how many myosin heads 
(cross-bridges) are available to interact with accessible 
sites on actin filaments. Using the MUS ICO platform 
simulations, we have assessed the differences between 
our spatially explicit model and two versions of mass ac-
tion kinetic models, the original Huxley 1957 model 
(Huxley, 1957) and a more realistic three-state model 
similar to that of Duke (1999). Both of these mass ac-
tion models have an original version and with the con-
straint introduced by Piazzesi and Lombardi (Piazzesi 
and Lombardi, 1995; Mijailovich et al., 2000) that pre-
serves the number of myosin heads, denoted as Huxley 
PL and Duke PL.

Two-state (Huxley) model
Isometric force development.  The Huxley 1957 model is 
the simplest and is used here to illustrate key differ-
ences among spatially explicit and mass action kinetic 
models. Fig. 6 A shows force development and isotonic 
shortening after a quick release to zero force (F = 0). 
For comparison, the tension in mass action models is 
scaled to force per myosin filament (Fig. 6 A); thus, the 
rescaled maximum isometric tension, To, from mass ac-
tion models is the same as the maximum isometric force 
in the myosin filament, Fo, predicted by MUS ICO. 
During force development, the predicted tensions by 
Huxley and Huxley PL almost coincide, and only small 
differences are caused by a small amount of shortening 
because of the extensibility of actin and myosin fila-
ments (Fig. 6 A). The MUS ICO predicted force per my-
osin filament also matches for the first ∼50 ms, when 
the population of bound myosins is still low, but when 
the number of bound cross-bridges increases (t > 60 
ms), the MUS ICO predicted force is slightly lower and 
followed by a long slow rising phase. At t > 500 ms, the 
MUS ICO prediction also plateaus and coincides with 
the other two models.
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The insets in Fig.  6  A display comparisons among 
cross-bridge distributions from MUS ICO and the mass 
action kinetic models. At 5 and 20 ms, all three models 
show about the same distributions reflecting negligible 
differences in force in the early period of force develop-
ment. The fluctuations in the distributions calculated 
by MUS ICO are caused by favorable or unfavorable spa-
tial matching of discrete positions of myosin heads and 
binding sites on the actin filament in the 3-D sarcomere 
lattice. Because of the extensibility of the filaments 
during force development, a small relative movement 
between actin and myosin filaments (shortening) is ob-
served even under isometric conditions (Mijailovich et 
al., 1996). This shortening shifts the distributions left-

ward and allows additional flux of myosin binding that 
differs between MUS ICO and mass action kinetic mod-
els. At 80 ms, a significant number of myosin heads is 
bound, and some sites on actin are already occupied; 
thus, the rate of increase in force is a little slower than 
mass action models. Consequently, the MUS ICO pre-
dicted force in this region is ∼5% smaller. Giving suffi-
cient time, the slow rising phase of force becomes small 
and all the net fluxes become smaller. At 700 ms, the 
distributions of cross-bridges at almost all cross-bridge 
strains, x, become the same.

Isotonic shortening.  After a quick release from maximal 
isometric force, Fo, to isotonic force, F = 0, the shorten-

Figure 6. Isometric force develop-
ment and unloaded isotonic shorten-
ing by the Huxley kinetic models. (A) 
Force development and cross‑bridge 
distributions predicted by MUS ICO 
(black lines and histogram bars), Hux‑
ley 1957 (green line), and Huxley PL 
(dashed red line) models. Maximum iso‑
metric tension To = 270 kPa from mass 
action models is scaled to maximum 
force per myosin filament (MUS ICO) Fo 
= 530 pN. Comparison of cross‑bridge 
distributions at 5, 20, 80, and 700 ms 
are shown as insets, where black bars 
represent bound cross‑bridges (MUS 
ICO), Huxley‑bound cross‑bridge distri‑
butions are shown as solid green lines, 
and Huxley PL as dashed red lines. Cyan 
diamonds denote the force at which the 
distributions are taken. The compari‑
son of displacements after a quick re‑
lease and unloaded shortening are also 
shown in the inset. (B) The evolution of 
velocities during isotonic shortening 
after quick release to zero tension. The 
cross‑bridge distributions at times tQRel 
= 0+, 10, 20, and 80 ms after the quick 
release are shown as insets.
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ing response of the half sarcomere is the same in all 
three models because the series elastic components in 
the Huxley and Huxley PL mass action kinetic model 
match the overall elasticity of the extensible filaments 
used in MUS ICO simulations. After a quick release, the 
distributions shift for about the same amount (Fig. 6 A, 
inset), exposing parts of the distribution to high bind-
ing rates (see inset in Fig.  6  B at a time immediately 
after quick release, tQRel = 0+). Although the displace-
ments are the same at tQRel = 0+, the velocity traces are 
different (Fig. 6 B). The largest velocity is predicted by 
Huxley, whereas the MUS ICO and Huxley PL have sim-
ilar values. The reason for these much larger velocities 
predicted by the Huxley model is the large binding flux 
in the region of high binding rates where there are no 
bound myosins. In contrast, the binding flux predicted 
by MUS ICO and Huxley PL is significantly smaller be-
cause of the significantly reduced number of myosin 
heads available for binding (Fig. 6 B, vertical arrows in 
inset at 10 ms). The resulting difference is best shown at 
tQRel = 10 ms after the quick release (Fig.  6  B, inset), 
showing that the cross-bridge distributions for the frac-
tion of newly bound cross-bridges in the Huxley model, 
displayed at the right hand side of the distributions, is 
much higher than in MUS ICO or Huxley PL distribu-
tions and significantly more shifted leftward reflecting 
higher shortening velocities after the quick release 
(Fig. 6 B, inset, open horizontal arrows). At later times, 
when the number of attached cross-bridges is signifi-
cantly reduced, the velocities predicted by all three 
models become closer together, having only a minimal 
difference in steady-state at tQRel = 200 ms after the release.

The predicted force-velocity curves by MUS ICO and 
mass action kinetic models for the same sets of parame-
ters (Huxley, 1957) showed quite different values of iso-
tonic force at low velocity of shortening (Fig. 7 A). For 
example, for isotonic force F/Fo = T/To = 0.6 MUS ICO 
velocity is significantly smaller than predicted by Hux-
ley and Huxley PL mass action kinetic models (63.5 
nm/s, 181nm/s, and 147.5 nm/s, respectively). At F/Fo 
= 0.4, Huxley PL velocity is midway between Huxley and 
MUS ICO. At higher values of isotonic force, Huxley PL 
velocities are close to Huxley’s, but as the isotonic force 
drops to low values, F/Fo = T/To < 0.3, the Huxley PL 
velocities approach the MUS ICO predictions, reaching 
about the same value at F/Fo = T/To ≤ 0.2. Interestingly, 
although the predictions of the original Huxley model 
(Huxley, 1957) agree very well with A.V. Hill’s force-ve-
locity relationship (Hill, 1938), MUS ICO predications 
and, to a lesser degree, those of Huxley PL underesti-
mate the shortening velocities at the same isotonic 
force (Fig. 6 A).

The differences in calculated force-velocity curves 
originate from neglecting conservation of the numbers 
of myosin heads and taking into account the occupancy 
of binding sites on actin in mass action kinetic models. 

Huxley PL takes into account conservation of the num-
ber of myosin heads but still neglects the occupancies of 
sites on actin. This effect can be seen in the bound cross-
bridge distributions at different times during transients 
after quick release at, for example, F/Fo = T/To = 0.4 
(Fig. 8 A). In both cases, immediately after a quick re-
lease (at tQRel = 0+ ms), the bound cross-bridge distribu-

Figure 7. Comparison of force-velocity relationships from 
MUS ICO (black line), Huxley 1957 (green line), and Huxley 
PL (red line). For reference, A.V. Hill’s force‑velocity data are 
shown as cyan closed circles (Hill, 1938). Force per myosin fila‑
ment (MUS ICO) is normalized by the maximum isometric force, 
Fo, and tension in mass action kinetic models is normalized to 
maximum isometric tension, To. (A) Large differences between 
the predictions of isotonic shortening velocities are observed at 
the same force (e.g., 0.6 and 0.4 of maximum isometric force, 
Fo, or tension, To) or with forces at constant velocities (e.g., 0.04 
and 0.133 of maximum shortening, vmax). (B) Isotonic lengthen‑
ing velocities for the original Huxley 1957 model rate constants 
(solid lines and closed symbols) and with additional Zahalak fac‑
tor fZah = 1.8 for x > hZah = 15.6 nm (Zahalak, 1986; dashed lines 
and open symbols) in order to increase cross‑bridge detach‑
ment at higher cross‑bridge strains at x > hZah during lengthen‑
ing. To generate a curve in the observed range (dotted green 
line), the Huxley 1957 mass action kinetic model requires fZah > 
4. The velocities in range from −60 to 20 nm/s are shown in the 
inset. Also, for reference, the force‑velocity data for lengthen‑
ing (Katz, 1939) are shown as cyan closed circles in addition to 
A.V. Hill’s data for shortening (Hill, 1938).
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tions shift for the same amount in all models, following 
the same instantaneous (elastic) shortening after release 
at F/Fo = T/To = 0.4 (Fig. 8 A, inset). However, the ve-
locities after release are not the same because the effec-
tive flux of myosin binding differs significantly among 
the models. The cumulative effect is shown in distribu-
tions at tQRel = 20 ms after quick release (Fig. 8 C, left). 
The fastest growth of the number of newly bound myosin 
heads, on the right hand side of the distributions, is pre-
dicted by the Huxley model, much slower growth is pre-
dicted by Huxley PL, and the slowest is predicted by MUS 
ICO. The Huxley binding flux is highest (Fig. 8 C, green 
arrows) because it does not take into account the reduc-
tion in the number of myosin heads already bound and 
drawn out from the region of binding (0 < x < h) and, 
therefore, shows the highest shortening velocity (Fig. 8 C, 
horizontal open green arrows). The Huxley PL model 
takes into account the fraction of bound heads outside 
the region 0 < x < h and reduces the effective flux of 
myosin binding and therefore predicts lower shortening 

velocity (Fig. 8 C, open red arrows) than Huxley at the 
same isotonic force. But Huxley PL does not take in ac-
count the reduced number of the occupied sites on actin 
and predicts higher velocity than MUS ICO. At tQRel = 200 
ms after the release, the distributions reached steady-
state, showing about the same pattern for all three mod-
els, but the differences in velocities remain because the 
fine balance of modulated binding flux by attached 
cross-bridges (Fig. 8 C, arrows up) and the detachment 
flux (Fig. 8 C, arrows down). The distinct differences in 
distributions are visible at the right hand side as a reflec-
tion of the difference in shortening velocities (for details 
see Fig. S2). At low isotonic force, the difference in ve-
locities becomes smaller and smaller, reflecting a low 
number of bound myosin heads and therefore its influ-
ence on binding flux and predicted velocities. Conse-
quently, when F/Fo ⪡ 0.1, the steady-state distributions 
almost coincide (at tQRel ≥ 80 ms, Fig. 6 B, inset).

If we now look at the same velocities of shortening as 
in MUS ICO at 211.5 nm/s (F/Fo = T/To = 0.4), Huxley 

Figure 8. Transient velocities and cross-bridge distributions after quick release to isotonic force at F/Fo = T/To. (A) Evolution 
of velocities after quick release to isotonic force of F/Fo = T/To = 0.4 predicted by MUS ICO (black line), Huxley 1957 (green line), and 
Huxley PL (red line). The displacements after release are the same because the SE components of Huxley 1957 and Huxley PL models 
match the effect of the myosin and actin filament compliances from MUS ICO (inset). (B) Velocity evolution after release to F/Fo = 
T/To values at which all models have the same steady‑state shortening velocity of 215.5 nm/s (i.e., 0.133 of vmax). (C) Cross‑bridge 
distributions and state probability density distribution functions at time tQRel = 20 ms after release to predicted (left column) and to 
F/Fo values that have the same steady‑state velocity of 215.5 nm/s (right column). The arrows on the right signify net binding fluxes 
and on the left signify net unbinding fluxes, and the horizontal open arrows represent current shortening velocity.
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and Huxley PL mass action kinetic models achieved the 
same velocities at different isotonic forces (Fig.  7  A, 
dashed pink lines). Consequently, the decrease in a 
half-sarcomere length is different and reflects the drop 
in force, whereas the slopes of the displacements are 
about the same (at t ≥ 0.715 s, Fig. 8 B, insets). Interest-
ingly, Huxley and Huxley PL achieved about the same 
steady-state velocities, and overall velocities differ 
slightly in early transient phase (Fig.  8  B), although 
cross-bridge distributions after release to different iso-
tonic forces displayed different initial shifts (Fig. S4 C at 
tQRel = 0+ ms). These different shifts compensate for the 
higher effective binding rates of Huxley 1957 and Hux-
ley PL models, resulting in about the same binding and 
detachment fluxes and therefore similar velocities. The 
cumulative effect of this behavior is best shown at tQRel = 
20 ms (Fig. 8 C, right panel). At steady-state (tQRel = 200 
ms), the cross-bridge distributions in detachment re-
gions (x < 0) are almost the same in all three cases as a 
reflection of all having about the same shortening ve-
locity. For details, see Fig. S4.

Isotonic lengthening.  With the same model parameters, 
MUS ICO predicted more realistic lengthening veloci-
ties than Huxley 57 (Fig. 7 B). The Huxley 1957 model 
predicted a maximum lengthening velocity about three 
times larger than observed of 1.8 T/To (Katz, 1939; Mc-
Mahon, 1984), whereas MUS ICO overshoots experi-
mental observations by only 50%, and Huxley PL slightly 
more (Fig. 7 B, solid lines and closed symbols). Inclu-
sion of a Zahalak factor of 1.8 brings the predicted 
lengthening velocities by MUS ICO and Huxley PL close 
to the experimental value of 1.8 F/Fo and 1.8, respec-
tively (Fig.  7  B, dashed lines and open symbols). To 
achieve the same values, Huxley’s model requires a Za-
halak factor of >4 (Fig. 7 B, dashed green line). These 
data demonstrate that for lengthening it is important to 
take into account both the conservation of myosin 
heads and availability of actin-binding sites. However, 
on closer look, the Huxley 1957 predictions are close to 
the Katz data (Katz, 1939) at low lengthening velocities 
(Fig. 7 B), but at lengthening velocities >60 nm/s, the 
Huxley predictions continue to grow at the same pace, 
whereas the experimental data level off at ∼1.8 T/To. 
The MUS ICO predictions are even better at the low 
lengthening velocities (Fig. 7 B, inset) but also show de-
partures to higher T/To than observed. MUS ICO pre-
dictions with fZah = 1.8 reaches the correct maximum 
force, but the initial slope of force-velocity curve during 
lengthening and at low velocities is significantly lower 
than observed (Fig. 7 B, inset). Overall, these data show 
that inclusion of the conservation of interacting species 
and the geometrical constraints significantly improve 
predictions of lengthening force-velocity relationship, 
but it may require inclusion of more precise strain de-

pendence of the actomyosin cycle and more than two 
states to achieve more realistic predictions.

Three-state (Duke) model
Isometric force development.  A three-state model in-
cluding a power stroke is the simplest realistic model 
that can explain T1 − T2 transitions (Huxley and Sim-
mons, 1971). Fig. 9 A shows force development and iso-
tonic shortening after a quick release to F = 0. During 
force development, the predicted isometric forces by 
MUS ICO and mass action three-state models show sig-
nificant differences (Fig. 9 A). The MUS ICO prediction 
shows a much faster rise of force than the mass action 
models and has an overshoot peak at ∼80 ms. The force 
in the Duke PL model also rises faster than Duke’s 
model and shows consistently higher values. At longer 
times (t > 0.5 s), the predicted force by all three models 
merges at the same constant value. The MUS ICO pre-
dicted force decreases after the peak, and Duke PL ap-
proaches to a constant value the fastest, whereas the 
force predicted by the Duke model has a long slow ris-
ing phase after initial fast growth.

The differences in the dynamics of force develop-
ment can be explained by comparing cross-bridge dis-
tributions at different instants of time (Fig. 9 A, insets). 
The largest differences are at ∼80 ms when the MUS 
ICO force reaches a peak. The reason for the fastest 
growth of force and the peak is caused by faster binding 
of cross-bridges during early times of development that 
increases the number of bound cross-bridges and in-
trinsic shortening of isometric muscle caused by exten-
sibility of actin and myosin filaments. This intrinsic 
shortening brings a significant number of attached pre-
stroke bridges in the region of power stoke firing and 
therefore contributes to a further increase of force. Be-
cause the rise of force is rapid, there is no sufficient 
time during that period for detachment of the cross-
bridges; thus, the force overshoots its steady-state value. 
However, when a sufficient number of cross-bridges is 
reached, the effective binding flux decreases, intrinsic 
shortening stops, and the detachment of cross-bridges 
becomes faster, whereas the attachment of new cross-
bridges becomes slower; thus, force decreases and in-
trinsic shortening reverses to intrinsic lengthening.

At t > 0.5 s, the MUS ICO predicted force also plateaus 
and coincides with the other two models. However, the 
cross-bridge distributions are quite different. The MUS 
ICO distributions are much narrower than Duke’s. The 
reason is that Duke’s model does not have the restric-
tion of available myosin heads and binding sites on 
actin; thus, it continues to bind at higher positive and 
negative strains and shows much wider distribution of 
bound cross-bridges. Consequently, Duke predicted 
force after initial fast growth continues with a long slow 
growth. Duke PL does not show this behavior because 
the binding was permitted only in the region  ±  𝓁  ℛ   / 2  = 
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Figure 9. Three-state model predictions of isometric force development and unloaded shortening with bound cross-bridge 
distributions. (A) Force development predicted by MUS ICO (black lines), Duke (green line), and Duke PL (red line) models. Maxi‑
mum isometric tension To = 300 kPa from mass action kinetic models is scaled to maximum force per myosin filament (MUS ICO) Fo 
= 600 pN. Comparison of bound cross‑bridge distributions at 5, 20, 80, and 700 ms are shown as insets where black bars represent 
weakly bound cross‑bridges and red bars the post‑power stroke bound myosins (MUS ICO). Duke cross‑bridge distributions are 
shown as solid lines (weakly bound as a green line and post‑power stroke as a dark green line) and Duke PL as dashed lines (pink 
and cyan, respectively). Cyan diamonds denote force and time at which the distributions are taken. The evolution of displacement 
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±4.7 nm, reducing the artificial effect of unrestricted 
binding of Duke’s model that results in a wide equilib-
rium cross-bridge steady-state distribution. Conse-
quently, Duke PL reaches the plateau fastest and does 
not have an overshoot, but if not normalized, the Duke 
PL model has smaller fully developed tension than the 
Duke model because cross-bridges that can bind are re-
stricted within the region   𝓁  ℛ   .

Isotonic shortening.  After a quick release to unloaded 
shortening at t > 0.7 s (Fig. 9 A, inset), the shortening 
response of the half sarcomere for all three models is 
also the same because the series elastic components of 
Duke and Duke PL models match the overall effect of 
myosin and actin elasticity used in MUS ICO simula-
tions. All three models predicted transient phases after 
a filament force or tension drop from maximum iso-
metric Fo or To to the isotonic F or T: phase 1 reflects 
the undamped elastic shortening during an instanta-
neous drop of force, phase 2 shows rapid shortening, 
which is followed by phase 3 displaying a period of 
shortening at reduced speed, and finally phase 4, where 
shortening velocity evolves into steady velocity vmax (Pi-
azzesi et al., 2002). During the transient phase 3, the 
duration of the reduced velocity region is shortest in 
the Duke model, significantly longer in Duke PL, and 
the longest in MUS ICO, causing a delay in the steady-
state decrease rate in displacement traces (Fig. 9 A, inset).

Although the initial shortenings are the same, the ve-
locity traces at tQRel = 0+ ms after the quick release are 
different (Fig. 9 B). The fast transient phase of veloci-
ties of each model reaches high values of ∼5 µm/s 
(Fig. 9 B, inset) and then decrease quickly to low values 
>1 µm/s for Duke and to significantly lower values (to 
∼0.2 µm/s) for Duke PL and MUS ICO. The reason for 
very high velocities just after release at tQRel = 0+ is the 
rapid transition of a large number of cross-bridges from 
the pre- to post-power stoke state increasing the force 
driving the shortening and also decreasing the resis-
tance to shortening (Fig. 9, A and B). At tQRel > 5 ms 
after the release, a large number of the cross-bridges in 
the post-power stroke state detaches quickly, signifi-
cantly decreasing shortening velocity. MUS ICO and 
Duke PL have a longer period at low velocities (phase 
3) than does the Duke model. Duke’s cross-bridge dis-
tributions at tQRel ∼ 10 ms show a large shift to the left 
and a different profile compared with the MUS ICO and 
Duke PL distributions (Fig. 9 C and Fig. S6). Thus, at 
this time, the shortening velocity predicted by the Duke 
model rapidly increases, whereas the shortening veloci-

ties of MUS ICO and Duke PL still have low velocities for 
an additional 8–10 ms when they also begin to increase 
(Fig. 9 B). After a few damped oscillations between fast 
and slow shortening, all three models reach steady-state 
velocities (Fig. 9 B).

Similarly to the predictions from models with the 
Huxley actomyosin cycle, the force-velocity curves for 
three-state actomyosin cycle showed large differences 
between MUS ICO and the mass action kinetic models 
(Fig.  10). At higher values of isotonic forces after re-
lease, the predicted velocities by the Duke model di-
verge, whereas MUS ICO and Duke PL have the similar 
values, consistent with observation of Edman (1988). 
The reason for a good agreement between MUS ICO 
and Duke PL is the carefully chosen width of the myo-
sin-binding region   𝓁  ℛ    = 9.4 nm. However, if the width of 
the region   𝓁  ℛ    increases, the predicted velocities by 
Duke PL at higher isotonic forces become larger, ap-
proaching the divergent Duke model predictions. The 
reason for this divergent behavior could be in using 
state transition rate constants, which are quite different 
than originally used by Duke (1999).

The predicted velocities using Duke’s original con-
stants show no divergence of the Duke model, the veloc-
ities were close to those predicted by Duke PL, and 
overall, all three models show force-velocity relations 
similar to the observations of Edman (1988), but only 
after renormalization (Fig.  10, inset). Also, the differ-
ences in model predictions have the same trend as in 
Fig. 10 but to a lesser degree. MUS ICO again predicted 
lower velocities than Duke or Duke PL for the same iso-
tonic forces. Although the original constants used by 
Duke provided more reasonable force-velocity curves, 
they provided only about the half of the expected force 
per myosin filament (Fig.  10, inset) and a large over-
shoot during T1 − T2 transitions (Fig. 12 A). Thus, we 
will focus here only on the set of constants that provides 
very good predictions by MUS ICO for all experiments. 
It is also important to emphasize that at higher isotonic 
tensions (T/To > 0.7) the shortening velocities show in-
stabilities, and only an approximate value of the short-
ening can be deduced from the stepwise 
displacements traces.

In the middle range of isotonic forces for the new set 
of parameters (Fig. 10), for example at F/Fo = T/To = 
0.4, the MUS ICO predicted velocity is slightly smaller 
than that predicted by Duke PL but significantly smaller 
than predicted by Duke (445 nm/s, 543 nm/s, and 763 
nm/s, respectively). Similar behavior is observed at 
lower or slightly larger isotonic force than T/To = 0.4, 

after quick release to unloaded shortening is shown in the inset. (B) The evolution of velocities during isotonic shortening after quick 
release to zero tension. The velocity transients for the first 10 ms after release are shown in the inset. (C) The cross‑bridge distribu‑
tions and state probability density distribution functions at times tQRel = 5 and 10 ms after the quick release. A complete set of the 
distributions and distribution functions (at tQRel = 0+, 5, 10, 20, 80, and 200 ms) is shown in Fig. S6.
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but for T/To > 0.7, Duke velocities diverge more and 
more from the MUS ICO predicted velocities (Fig. 10). 
Velocity transients after a quick release show similar be-
havior as for isotonic unloaded shortening, displaying a 
very fast increase in velocities because of rapid power 
stroke transitions followed by a large drop and period 
of low velocities, damped oscillations, and finally reach-
ing steady-state (Fig. 11, A and B). At low levels of iso-
tonic force, MUS ICO predicts ∼9% smaller velocities 
than Duke and 8% smaller than Duke PL (Fig.  10). 
These differences are much larger than observed in the 
comparative simulations with the Huxley’s actomyosin 
cycle (Figs. 6 B and 7 A). The reason for these larger 
differences is that the number of attached bridges at 
low isotonic forces (at F/Fo = T/To ≈ 0) is much larger 
in simulations with the three-state model compared 
with Huxley’s two-state model. This result demonstrates 
the importance of conserving the number of myosin 
heads (Mijailovich et al., 2000) and the reduction of the 
number of available sites on actin for myosin binding.

As shown for the Huxley 1957 actomyosin binding 
model, neglecting conservation of myosin heads and 
occupancy of binding sites on actin in mass action ki-
netic models could explain the differences in the 
force-velocity curves in Fig. 11. The effect of the simpli-
fications inherent in these mass action kinetic models 
can be seen in the bound cross-bridge distributions at 
different times during transients after quick release at 
F/Fo = T/To = 0.4 (and at 0.6, shown in Figs. S3 and S5). 
In both cases, at tQRel = 0+ ms after a quick release, the 
bond distributions shift for the same amount in all 
models, following the same shortening after release at 
F/Fo = T/To = 0.4. However, the velocities after release 

are not the same (Fig. 11 A, inset) because the effective 
flux of the transitions between power stroke states, de-
tachment of bound myosin, and the flux of binding my-
osins significantly differs among the models. The 
cumulative effect of the history of velocities on the 
cross-bridge distributions at tQRel = 20 ms (after the re-
lease) shows approximately the same distributions pre-
dicted either by MUS ICO and Duke PL, and at that 
time the velocities are in phase 3, whereas the Duke dis-
tributions are significantly different, reflecting largely 
increased shortening velocities that are already in phase 
4. Consequently, the distribution is shifted to the left, 
and the magnitude of post-power stroke state distribu-
tions is decreased because of a large flux of detaching 
post-stroke cross-bridges. At tQRel = 200 ms after the re-
lease, the distributions reached steady-state, showing 
about the same pattern for all three models, but the key 
difference between the Duke and the other two models 
is a larger flux of attaching cross-bridges and a larger 
fraction of both pre- and post-power stroke states (see 
Fig. S3). Note that both pre- and most post-power stroke 
cross-bridges contribute to contraction force and there-
fore higher steady-state velocities. At higher and middle 
range of isotonic forces, the cross-bridge distributions 
of MUS ICO and Duke PL are similar, and their veloci-
ties are also similar. At low isotonic force, the difference 
in velocities becomes smaller, but the Duke PL distribu-
tions become closer to Duke’s distributions and slowly 
move away from the MUS ICO distribution. The veloci-
ties follow the same trend.

Similar differences can be observed at the same veloc-
ities of shortening as in MUS ICO at, for example, 445 
nm/s (i.e., 0.29 of Vmax at F/Fo = 0.4). To achieve the 

Figure 10. Three-state model comparison of 
force-velocity relationships predicted by MUS ICO 
(black line) versus Duke (green line) and Duke PL (red 
line). For reference, Edman’s force‑velocity data are 
shown as cyan closed circles (Edman, 1988). Force per 
myosin filament (MUS ICO) is normalized by maximum 
isometric force, Fo, and tension in mass action kinetic 
models is normalized to maximum isometric tension, To. 
The Edman’s observations (cyan closed circles) agreed 
relatively well with MUS CO prediction (black line) ex‑
cept for F/Fo = T/To > 0.8. The predicted isotonic short‑
ening velocities at the same force (e.g., 0.6 and 0.4 of 
maximum isometric force, Fo, or tension, To) show large 
differences between MUS ICO and Duke mass action 
model. Similarly, there are large differences in forces (or 
tension) at constant velocities (e.g., 0.17 and 0.29 of 
maximum shortening velocity, vmax). At tensions close to 
To, the velocities for Duke and Duke PL become unsta‑
ble and show relatively large values diverging from the 
Edman’s data (cyan closed circles). To test whether this 
deviation is caused by modified Duke’s rate constants, 

we show in the inset the predictions using Duke’s original constants (Duke, 1999). The velocities predicted with these rate constants 
do not show divergence, Duke’s predictions are close to Duke PL, but MUS ICO predictions still show smaller velocities especially at 
higher isotonic forces. All three models show the double‑hyperbolic force‑velocity relations and agree well with Edman’s data with 
scaling the observed velocities to the predicted. However, the major problem with prediction of all three models using the original 
constants is low isometric tension and much smaller maximum shortening velocities than observed.
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Figure 11. Three-state model predictions for transient velocities and cross-bridge distributions after quick release to isotonic 
force at F/Fo = T/To = 0.4 or at steady-state shortening velocity of 445 nm/s (i.e., 0.29 of vmax). (A) Evolution of velocities after 
quick release to isotonic force of F/Fo = 0.4 predicted by MUS ICO (black line), Duke (green line), and Duke PL (red line). The dis‑
placements after release are the same because the SE components of Duke and Duke PL models match the effect of the myosin and 
actin filaments from MUS ICO (right inset). The velocity transients during the first 20 ms after release are shown in the left inset. (B) 
Velocity evolution after release to the F/Fo values at which all models have the same steady‑state shortening velocity of 445 nm/s. In 
the left inset are shown velocity transients during the first 20 ms after release and in the right inset the displacements after release. 
(C) Cross‑bridge distributions and state probability density distribution functions at times tQRel = 20 ms after release to F/Fo = T/To = 
0.4 (left column) and to F/Fo = T/To, which have the same steady‑state velocity of ∼445 nm/s (right column).
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same velocities, each model requires release to differ-
ent isotonic force levels (Fig. 10). For example, Duke 
PL achieved the same steady-state velocity at slightly 
higher, but Duke at much higher, isotonic force 
(Fig. 10). Consequently, cross-bridge distributions after 
the release to different isotonic forces display different 
initial shifts in the cross-bridge distributions. These dif-
ferent shifts create large differences in the flux of myo-
sins binding to actin, causing large differences in 
shortening velocities at early times after release (tQRel up 
to 40 ms; Fig. 11 B, insets). The cumulative effect of the 
history of these different shortening velocities is best 
represented at the cross-bridge distributions at tQRel = 20 
ms (Fig. 11 C, right), showing approximately the same 
distributions predicted by MUS ICO and Duke PL 
(phase 3) but significantly different Duke distributions, 
reflecting much higher binding flux and higher short-
ening velocities typical for phase 4. When all three mod-
els reach phase 4, both the distribution and shortening 
velocities become similar (see Fig. S5). It is interesting 
to note that at steady-state the same velocities are 
achieved at different isotonic forces, i.e., by quantita-
tively different underlying binding processes.

Fast force transients (T1 − T2).  The three-state model 
predictions of the tension recovery after rapid small 
length shortening per half sarcomere, yo, to zero force 
or tension (T1 ∼ 0) also showed significant differences 
between the models (Fig. 12 A). MUS ICO and Duke PL 
showed rapid force or tension recovery, after initial 
drop in force and early plateau (T2), followed by a slow 
force redevelopment phase to isometric force or ten-
sion. The response of all three models almost coincides 
during ∼1.2 ms after the release but shows large differ-
ences during the plateau phase (from 2 to 80 ms after 
release). During the plateau phase, the balance be-
tween fast detachment and reattachment fluxes of 
cross-bridges defines differences in the time courses of 
force recovery. The key difference in the response orig-
inates in the reattachment flux, which is much larger in 
Duke’s model. The cumulative effect of this process is 
best shown in Fig. 12 B at   t   T  1   T  2      = 5 ms after rapid shorten-
ing, where the distribution of the fraction of reattached 
cross-bridges by Duke model (green lines) far exceeds 
that predicted by Duke PL (pink lines) and MUS ICO 
(cross-bridge frequencies, black bars), generating much 
larger force, T2, overshooting the maximum isometric 
force or tension, To (Vilfan and Duke, 2003). In con-
trast, the steep initial fast rise of tension up to 1.2 ms 
after the release showed almost no difference among 
the models (Fig. 12 A, inset). This rapid tension recov-
ery immediately after release is predominately caused 
by dominant transition of the attached cross-bridges 
from pre- to post-power stokes states and a minor re-
verse transition flux. These power stroke transitions in-
crease the force with only negligible attachment or 

detachment of cross-bridges, minimizing the effect of 
the number of available cross-bridges or occupied sites 
on actin and therefore in attachment and detachment 
fluxes. The main difference between the models is in 
the late phase of rapid force redevelopment and the 
plateau phase. The difference in the time course of the 
responses originates from the differences in binding 
fluxes (Fig. 12 B, arrows). Unrestricted rebinding in the 
Duke mass action model generates a much larger bind-
ing flux (Fig. 12 B, green arrows) than Duke PL that 
accounts for reduced number of available myosin heads 
for binding (Fig. 12 B, red arrows) and an even smaller 
net flux in the MUS ICO prediction, which in addition 
accounts for the occupied sites on the actin filament 
(Fig. 12 B, black arrows). Consequently, the three mod-
els show quite different T2 values. The much larger 
binding flux shown at 5 ms (Fig. 12 B, green arrows) 
causes a much higher rate for the late phase of rapid 
force redevelopment and an erroneous overshoot of 
force above the isometric value and an unrealistically 
high T2. In the final phase, reattachment and detach-
ment of cross-bridges continues creating distributions 
of cross-bridges toward the steady-state distribution at 
isometric force or tension, To, observed during isomet-
ric force development. See Fig. S7 for detailed cross-
bridge distributions during the transitions.

D I S C U S S I O N

The large amount of available structural, biochemical, 
and biophysical data on muscle contraction provides an 
extraordinary environment to allow the development of 
a more comprehensive model that can translate the 
findings of simple and well controlled experiments into 
physiological insights to the working muscle in health 
and disease. The development of the MUS ICO plat-
form and other 3-D explicit sarcomeric models (Daniel 
et al., 1998; Chase et al., 2004; Tanner et al., 2007, 2008, 
2012; Williams et al., 2012) provides a significant step 
toward integration of the broad sweep of current exper-
imental observations. Incorporation of new findings 
into the model provides an opportunity to unveil im-
portant features overlooked in simplified models. Here, 
we define the effect of the concentration ratio of teth-
ered molecules and their ligands, their geometric con-
straints, and the occupancy of species on binding 
kinetics in contracting sarcomeres.

Mass action kinetic models provided important in-
sights for understanding complex muscle behavior. 
However, the success of these models was limited to ex-
plaining typically one or a very few experiments and 
provided only the apparent relationship between mo-
lecular and fiber data. Although such models have 
been useful in defining important parameters of con-
traction, the key missing characteristics are (a) number 
of bound cross-bridges, (b) the relationship between 
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cross-bridge forces and muscle tension, (c) conserva-
tion of the number of cross-bridges and actin-binding 
sites, (d) nonlinear cross-bridge stiffness, (e) local in-
teractions between myosin, actin, and regulatory pro-
teins, and (f) role of sarcomeric accessory proteins, for 
example titin, nebulin, and MyBP-C. These must be 
included to achieve a more comprehensive model of 
contraction and its regulation, which is the long-term 
goal of this work. This paper represents a first step 
toward this goal.

In the sarcomere lattice, binding of tethered myosin 
heads to the available sites on actin is constrained by 
local geometry and, as such, largely differs from myosin 
binding in solution or in mass action kinetic models. To 
quantify these differences, we compared the predic-
tions of the 3-D spatially explicit MUS ICO model with 
the simplest two mass action models for three classical 
experiments in muscle: force development, isotonic 
shortening, and fast transients after a sudden change in 
muscle length. Without loss of generality, these two 
models provide the most transparent display of quanti-

fiable differences between mass action models and 
MUS ICO simulations.

The key features of our explicit 3-D model of sarco-
mere contraction include myosin binding to several 
available sites on actin and explicit accounting of myosin 
heads in each state of the ATPase cycle. The largest dif-
ferences between the 3-D explicit model predictions 
(MUS ICO) and mass action kinetic models are in cases 
when sarcomere length or force suddenly change from 
the state where a large fraction of cross-bridges are at-
tached or during shortening at medium to high isotonic 
tension after release. In all cases, the number of myosins 
available for binding is significantly reduced and large 
number of sites on actin is already occupied, thus the 
effective rate of binding, i.e., the binding flux, is also 
significantly reduced in comparison with the mass action 
models. The differences are a direct reflection of an in-
correct formulation of all mass action models derived 
from the original A.F. Huxley 1957 model (Huxley, 
1957), namely that although the sum of probability den-
sities functions at a given x is 1, the global sum of prob-

Figure 12. Three-state model (Duke) predictions of T1 − T2 transitions and corresponding bound cross-bridge distributions. 
(A) Force transients after rapid length shortening per half sarcomere, yo = 7.35 nm, predicted by MUS ICO (black lines), Duke (green 
line), and Duke PL (red line) models. The force transients during the first 20 ms after quick decrease in length of per half sarcomere 
are shown (inset). (B) The bound cross‑bridge distributions and state probability density distribution functions at times   t   T  1   T  2      at 1 and 5 
ms after T1 change of length. The arrows signify net binding fluxes that cause different rates of force redevelopment. The evolution 
of cross‑bridge distributions at early times (  t   T  1   T  2      < 1 ms) and at later times (  t   T  1   T  2      > 5 ms) are shown in Fig. S7.



25JGP  

abilities is not 1; thus, the governing equations are not 
properly constrained. This results in unrealistic fluxes of 
myosin rebinding to actin during transient muscle re-
sponses or even in steady-state responses when a large 
number of myosin heads are drawn outside the binding 
region. The reformulation of the original Huxley ap-
proach by Piazzesi and Lombardi (1995) reduces, in 
part, the effect of the incorrect formulation of the mod-
els, but it is still incomplete, and as a consequence, dif-
ferences still remain. In addition, the availability of 
multiple binding sites to each myosin head reduces the 
myosin binding rate in MUS ICO by a factor fsk = 2.5–3 
times from the binding rates in mass action models in 
order to achieve equivalent binding fluxes to that of the 
mass action models. This scaling factor, fsk can be calcu-
lated and takes into account the span of actin-binding 
sites that myosin can reach for a prescribed binding rate 
function. Notably, this step is essential in translating rates 
obtained in solution into binding kinetics in muscle fibers.

Isotonic shortening
During isotonic shortening, large differences between 
models are observed immediately after a quick release 
at all isotonic forces because during a quick release a 
significant number of cross-bridges shift out of the 
binding region, and the effective binding flux strongly 
depends on the number of available myosin heads and 
the unoccupied actin-binding sites. MUS ICO takes into 
account these steric restrictions that are not present in 
original mass action kinetic models. Quantitative differ-
ences in the unloaded shortening velocities are dis-
played in Fig.  6  B and 9 B where the differences are 
largest immediately after release, i.e., when the number 
of the bound cross-bridges is the highest and is signifi-
cantly reduced at unloaded steady-state velocities where 
the number of attached cross-bridges is significantly re-
duced. Similar behavior is apparent in force-velocity re-
lationships (Figs. 7 and 10) where the differences in 
steady-state velocities are higher at higher isotonic ten-
sions and much smaller at low isotonic tensions. Thus, 
both the transient response and the steady-state force-ve-
locity relation expose the larger differences between 
the MUS ICO and the mass action models in cases when 
the number of attached cross-bridges is large. Conse-
quently, at larger isotonic forces, both mass action ki-
netic models achieve the same shortening velocities at 
much higher isotonic tensions than MUS ICO (Figs. 7 
and 10). For example, at isotonic forces F > 0.3Fo, the 
difference is between 20 and 30% of Fo. Inclusion of the 
Piazzesi–Lombardi condition somewhat reduces these 
differences, but at higher levels of isotonic forces, the 
differences are still large. These results demonstrate 
that in order to fit the experimental data, the state tran-
sition rates and the rates of ATPase cycle should be re-
evaluated, and new quantitative relationships for the 
energetics need to be derived. Notably, this may not be 

possible with simple models like Huxley 1957 because 
in order to match Hill’s experimental data (Fig.  7), 
MUS ICO may require more than two actomyosin states 
and more realistic strain dependence of state transition 
rates than Huxley originally proposed (Huxley, 1957). 
This is in part achieved with MUS ICO predictions with 
Duke’s three-state cycle (Fig. 10), but for better match-
ing the experimental data, it may be necessary to use a 
more realistic multistate actomyosin cycle and updated 
elastic and geometric parameters.

The oscillations of velocities are observed in both sto-
chastic (MUS ICO) and mass action three-state models 
(Figs. 9 B and 11, A and B) and are caused by instabili-
ties during the transient change of tension from isomet-
ric to isotonic force. These fluctuations are also observed 
in traces of isotonic shortening (Piazzesi et al., 2002). 
The additional oscillations in MUS ICO predictions are 
caused by combination of the stochastic process of 
binding, causing the fluctuation in force over the time, 
and variations in the degree of favorable matching of 
myosin binding in the 3-D sarcomere lattice, i.e., the 
effect of periodic structures in myofilament lattice. 
These effects are amplified in the simplified half-sarco-
mere system and would become less prominent if more 
sarcomeric structures in series are included.

Muscle power output, vT(v), per myofilament 
(Fig. 13) reflects the differences in velocities between 
MUS ICO and mass action kinetic model predictions. 
For both actomyosin models, the MUS ICO prediction 
of power output shows lower peaks than the mass action 
models, and the peaks occur at different velocities. The 
Huxley PL and Duke PL models are closer to MUS ICO 
prediction, signifying the importance of taking into ac-
count the correct kinetic relationship between tethered 
myosins and binding sites on actin in a 3-D sarcomere 
lattice. Because the rate constants of the original Hux-
ley model (Huxley, 1957) are derived from fits of A.V. 
Hill force velocity curves (Hill, 1938), the peak power of 
the Huxley mass action model coincides with the ob-
served peak at v ≈ vmax/3 (Fig. 13 A, blue dashed line), 
whereas the MUS ICO predicted peak is shifted to the 
right (Fig. 13 A, black arrow) because of much smaller 
isotonic velocities and higher values of isotonic 
forces (Fig. 7 A).

For the three-state model with commonly used rate 
constants, MUS ICO predicted the peak power at the 
correct velocity (∼vmax/3) but with peak power slightly 
lower than the 140 aW value reported in Edman’s data 
(Edman, 1988; Smith and Mijailovich, 2008). The Duke 
PL prediction is also in the same range, whereas the 
Duke predicted peak was shifted to the right and the 
peak power was greatly overestimated.

Overall, the large number of myosin and actin fila-
ments and the extensibility of the filaments are not suf-
ficient to erase the fluctuations in distributions, caused 
by spatial mismatching of discrete positions of myosin 
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heads and the binding sites, in a half-sarcomere system. 
However, in a multiple-sarcomere system, the fluctua-
tions in distributions would be expected to be signifi-
cantly reduced by inter-sarcomere fluctuations in length 
caused by variations in force induced by the stochastic 
binding process.

T1 − T2 transients
Similarly, the T2 response also shows large differences 
among the models (Fig.  12). The fast recovery phase 
and the “shoulder” differ not only in magnitude but also 
in shape. For example, Duke’s original model predicts 
an overshoot (Vilfan and Duke, 2003), whereas MUS 
ICO and Duke PL showed more realistic behavior. In 
this case, the different responses are more complex and 
consist of two processes. The first process, during fast 
recovery, represents an interplay between cross-bridge 
and filament elasticity and generates significantly differ-
ent force responses in MUS ICO than in mass action ki-
netic models because each cross-bridge experiences a 
different change in strain, Δx, after a rapid shortening 
of yo per half sarcomere, dependent on the position of 
the cross-bridge along the filaments. This contrasts with 
mass action models where the change in strain is uni-
form for all cross-bridges after correction for the effect 
of series elasticity,  Δx =     y  o  *  =     y  o   −  y  o  SE .  Therefore, in 
MUS ICO simulations, different Δx values after rapid 
shortening impose variable power stroke transition rates 
along the myofilaments, and each cross-bridge contrib-
utes in a different manner to fast force recovery. During 
the later stages of force recovery, where the flux of the 
reattachment of cross-bridges is modulated by the num-
ber of attached cross-bridges and available binding sites 
on actin, MUS ICO simulations do not show an over-
shoot and look more realistic.

In the analysis of the differences in responses between 
the models, we compare predictions assuming the same 
(or equivalent) input parameters. We made no attempt 
to fit any particular set of data; however, the mass action 
model predictions show the features of the original 
published modeling results that were fit to experimen-
tal data. Each of the presented predictions, however, il-
lustrates significant differences among the models. The 
Duke mass action model predictions that include an 
overshoot are reported in Vilfan and Duke (2003). 
Though, the model that includes the Piazzesi–Lom-
bardi condition (Piazzesi and Lombardi, 1995) pre-
dicted only modest overshoot and a more realistic time 
course than Duke model. The MUS ICO predictions 
show similar trends, but differences between the mod-
els are significant. Regarding the spatially explicit mod-
els, Daniel et al. (1998) showed similar predictions as 
MUS ICO but reported only one noisy time course, 
which was difficult to compare.

Isometric force development
Differences between MUS ICO and mass action kinetic 
models are also observable during isometric force de-
velopment but to a much smaller degree. Duke’s model 
shows large differences during the early phase of the 
force development (Fig. 10) that are primarily caused 
by poorly defined detached states within the binding re-
gion; thus, the distribution of available binding sites on 
actin does not match the fraction of the detached state. 
Fixing the binding region to   𝓁  ℛ  ,  i.e., an equivalent 
range to Huxley’s h provides slightly better match of 
Huxley PL to MUS ICO predictions because it, in cer-
tain ways, preserves the number of myosin heads, but 
the number of available sites on actin remains unde-
fined and still causes large differences. Even at steady-

Figure 13. Comparison of mechanical power output vT(v) of MUS ICO and mass action kinetic models. (A and B) Displayed 
are comparisons for Huxley (A) and Duke (B) actomyosin cycle. Duke comparisons of the power output with commonly used rate 
constants are shown as solid lines and closed symbols, whereas the power output with original constants (Duke, 1999) are shown 
as dashed lines and open symbols. Power output, vT(v), is in atto Watts (aW) per myosin filament. The observed velocities at peak 
power at ∼vmax/3 are shown as vertical blue dashed lines. Duke velocities at the peak power are shown at its vmax/3 as a green dashed 
line. Similarly, the velocities at the peak power predicted by all three models with Duke original constants (Duke, 1999) are shown 
as a black dotted line.
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state (t ≥ 0.7 s), the differences in distribution of both 
bound states are quite different: the MUS ICO frequency 
distributions of bound cross-bridges show much sharper 
peaks than Duke or Duke PL. These differences in dis-
tributions are caused by different sampling of unoccu-
pied sites on actin by the available cross-bridges: in MUS 
ICO, each cross-bridge samples all available sites on 
actin within its reach, whereas mass action models are 
limited to the available sites on actin at a particular x. 
The excess number of binding sites on actin to the 
number of the unattached cross-bridges plays a pivotal 
role in binding showing sharper and narrower peaks in 
cross-bridge (frequency) distributions than in the state 
probability density functions in the mass action models.

It is interesting to compare the time courses of the 
force development. With the three-state model (Duke), 
MUS ICO predicted force reaches a peak during the 
early phase of the force development (Fig. 9 A). This is 
caused by the combination of a fast increase in force 
and instabilities associated with local shortening be-
tween the actin and myosin filaments caused by the ex-
tensibility of the filaments. In contrast, during force 
development with the Huxley model, there is almost no 
difference between mass action and MUS ICO simula-
tions (Fig. 6 A). The only small differences in forces are 
seen in the early phase of development caused primar-
ily by lumped versus distributed filament compliance in 
a 3-D sarcomere lattice. Looking over the very small dif-
ferences during the development of bound cross-bridge 
distributions shows that the original Huxley model con-
serves the number of myosin heads and available ac-
tin-binding sites within the binding range, 0 → h. 
However, the small differences during a fast change in 
force are caused by differences in binding fluxes result-
ing from the small amount of shortening during iso-
metric contractions caused by filament extensibility 
(Mijailovich et al., 1996).

Number of attached cross-bridges and mean 
cross-bridge force
One of the shortcomings of mass action kinetic models 
is their inability to predict the number of attached cross-
bridges and estimate mean cross-bridge force. In con-
trast, the MUS ICO simulations continuously trace the 
number of cross-bridges on each myosin filament. For 
example, at fully developed muscle tension, MUS ICO 
with Huxley’s two-state model predicts a mean number 
of attached bridges of 110 per half-myosin filament and 
a mean cross-bridge force of 4.8 pN. Under the same 
conditions, Huxley 1957 predicts a fraction of attached 
cross-bridges of 0.812 that translates to ∼122 attached 
cross-bridges per half myosin filament and a mean 
cross-bridge force of 4.35 pN. Both models likely overes-
timate the number of attached cross-bridges. This over-
estimation is caused by the specified magnitude and 
relatively broad strain dependence of Huxley’s original 

rate constants (Huxley, 1957). MUS ICO with the three-
state model predicted a lower number of attached cross-
bridges, 97 (or ∼65%), and a larger mean cross-bridge 
force of 6.2 pN. However, the Duke mass action kinetic 
model is not normalizable; thus, the number of at-
tached cross-bridges is not accessible for comparison. 
With Duke PL, the number of attached cross-bridges 
can be estimated by a similar approach to that used for 
the Huxley 1957 model, but the estimated number of 
cross-bridges strongly depends on the binding re-
gion length,   𝓁  ℛ  . 

Comparison with other models
There are only a few models that estimated the number 
of attached cross-bridges and force per myosin filament. 
For example, Smith and Mijailovich (2008) predicted 
∼110 bound cross-bridges per half myosin filament and 
a mean cross-bridge force of 5.9 pN. The other esti-
mates vary from 60 to 100 bound cross-bridges and 
mean cross-bridge forces in range from 4.5 to 7 pN de-
pending on type of muscle, experimental conditions, 
and temperature (Linari et al., 1998, 2007; Decostre et 
al., 2005). The general view is that 33% of myosin heads 
(or 66% of cross-bridges or ∼100 cross-bridges per a 
half of myosin filament) are attached in fully developed 
tension. Thus, our predictions using the three-state 
model are within the expected range.

The elasticity of filaments plays an important role in 
coupled strain dependence among the attached cross-
bridges affecting transition rates of actomyosin cycle 
and overall contribution of cross-bridge stiffness to the 
muscle stiffness (Mijailovich et al., 1996; Daniel et al., 
1998). During a fast change of force or muscle length, 
the change of cross-bridge strain Δx is nonuniform be-
cause of the coupling between nonuniform strains in 
actin and myosin filaments and the elasticity of cross-
bridges. Thus, the nonuniform cross-bridge strains 
along the overlap region affect the strain rates along 
the overlap. In mass action models, for simplicity, the 
filament extensibility is replaced with a series elastic 
component, and the change of the cross-bridge strains 
Δx along the filaments is not taken into account. The 
effect of nonuniform change of strain Δx along the 
overlap, however, is small compared with the effect of 
modulated myosin binding to actin. We performed sim-
ulations with rigid filaments in MUS ICO versus mass 
action models without a series elastic component and 
showed similar differences between MUS ICO and mass 
action model predictions as reported here. Thus, we 
confirmed that the responses of mass action models 
were not significantly affected by use of series elastic el-
ement in the mass action models instead of explicit fila-
ment elasticity.

The stochastic approach of Daniel et al. (1998) could 
potentially account for the effect of constrained bind-
ing, but limiting the system to only two filaments and 
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binding to collinear sites involves a low number of at-
tached cross-bridges and will not show differences as 
large as reported here. We have not included a large 
variation in elastic properties of myosin filament as ex-
plored by Daniel et al. (1998), but rather we used the 
elasticity of the filaments taken from the experiment of 
Kojima et al. (1994) for actin and assessed from x-ray 
diffraction (Huxley et al., 1994; Wakabayashi et al., 
1994) for both actin and myosin filaments. The validity 
of these input data for the compliances of filaments 
used in MUS ICO were tested by showing that MUS ICO 
predicted x-ray patterns consistent with x-ray data, and 
these findings are reported in our publications 
(Prodanovic, M., et al. 2014. Biophysical Society 58th 
Annual Meeting. Abstr. 768a; Prodanovic, M., et al. 
2014. 40th Annual Northeast Bioengineering Confer-
ence [NEB EC]. Abstr. 6972910; Prodanovic, M., et al. 
2015. Biophysical Society 59th Annual Meeting. Abstr. 
442a; Prodanovic et al., 2016).

The current development of MUS ICO is not designed 
for fitting experimental data per se, but rather to incor-
porate sufficiently accurate representations of muscle 
structural and kinetic data to predict muscle function 
without empirical parameters. Here, we presented only 
a small part of projected powerful possibilities that are 
currently under development. Because of its modular 
structure, the model can be made more and more real-
istic as better and better information is incorporated. As 
the model becomes more realistic, it can generate 
emergent properties that can motivate new and more 
insightful experiments. In particular, the basic modular 
form of MUS ICO provides an opportunity to develop 
comprehensive multiscale models of various myopa-
thies. The advantage of this approach is that any new 
application only requires development of the specific 
parts associated with specificities of the myofilament sys-
tem of interest. Extending MUS ICO to simulate patho-
logical states can be done relatively simply by 
incorporating known effects of, for example, pathologi-
cal mutations in myosin heavy chain, titin, or MyBP-C 
into the appropriate module.

Conclusions
In summary, 3-D sarcomere model predictions using 
MUS ICO show large differences compared with the pre-
dictions of the two simplest actomyosin cycles in force-ve-
locity curves, isotonic and isometric transients, including 
the velocity transients after quick release and the tension 
recovery after rapid small length shortening. Including 
in mass action kinetic models the conservation of myosin 
heads proposed by Piazzesi–Lombardi (Huxley PL and 
Duke PL models) partially reduced the differences in 
overall predicted responses, but at the molecular scale, 
the predictions are still disconnected from realistic acto-
myosin interactions in the sarcomere lattice. The origin 
of the differences in predicted muscle response is rooted 

in the flawed mathematical description, which does not 
ensure conservation of species, originally introduced by 
Huxley (1957) and used later in almost all mass action 
models. The consequences of this flaw in the model de-
scription is best visible in the differences between the 
myosin binding fluxes predicted by MUS ICO versus the 
mass action models and corresponding differences in 
instantaneous cross-bridge distributions. Consequently, 
the kinetic rate parameters from the experiments using 
the MUS ICO versus mass action model predictions show 
significantly different values. Furthermore, the explicit 
3-D sarcomere model simulations provides not only 
quantitative differences in muscle response but a pleth-
ora of additional essential information including (a) the 
number of attached cross-bridges per myosin filament; 
(b) the force per myosin filament that matches the value 
approximately estimated from the fiber tension; (c) the 
range of cross-bridge forces within reasonable values; (d) 
the number of cross-bridges in each actomyosin cycle 
state; and (e) a precise accounting of energy consump-
tion. Thus, inclusion of tethered molecule kinetics, geo-
metrical constraints, and explicit accounting for the 
occupancies of interacting species is essential for inter-
pretations in terms of interaction energetics.
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S U P P L E M E N TA L  M AT E R I A L

Mijailovich et al., https ://doi .org /10 .1085 /jgp .201611608
Normalization of the probability distributions of the attached states
The molecular origins of the differences in responses between different models for the same activation and mechan-
ical protocols can also be explained by comparing the cross-bridge probability distributions. To compare the distri-
butions between mass action models and MUS ICO, it is necessary to determine the normalization factors that relate 
the state probability density functions, pi(x,t), in mass action models with the frequency of cross-bridges in each 
actomyosin state within a bin of the prescribed width, Δxb, at the mean bin strain, xb, from MUS ICO simulations. 
The shape of the Duke model pi(x,t) is similar to the frequency distribution from MUS ICO simulations only at early 
phases of force development when the number of bound cross-bridges is small. We derived the scaling factor in the 
following way: we fitted the frequency of attached cross-bridges per bin (Fig. S1, gray bars) by a modified Gaussian 
function (four parameters; Fig. S1, green line) and calculated the factor to match a peak of the fraction attached 
from Duke’s mass action model (Fig. S1, black dashed line).

Figure S1. Matching the scales of the number of attached cross-bridges per bin from MUS ICO simulations to the fraction of 
attached cross-bridges from the Duke mass action model prediction at 5 ms after the onset of isometric force development. 
The best fit of the number of attached cross‑bridges (gray bars) by a modified Gaussian function (green line). The fraction of at‑
tached cross‑bridges from the Duke mass action simulations (black dashed line) after matching the peaks almost perfectly aligns with 
the MUS ICO predictions.

https://doi.org/10.1085/jgp.201611608
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Figure S2. Transient velocities and cross-bridge distributions after quick release to isotonic force at F/Fo = T/To = 0.6 and 0.4. 
(A) Evolution of velocities after a quick release to an isotonic force of F/Fo = T/To = 0.6 predicted by MUS ICO (black line), Huxley 
1957 (green line), and Huxley PL (red line). The displacements after release are the same because the SE components of Huxley 1957 
and Huxley PL models match the effect of the myosin and actin filaments from MUS ICO (inset). (B) Velocity evolution after release 
to F/Fo = T/To = 0.4. (C) Cross‑bridge distributions and state probability density distribution functions at times tQRel = 0+, 20, and 200 
ms after release to F/Fo = T/To = 0.6 (left column) and to F/Fo = T/To = 0.4 (right column). Here black bars represent bound cross‑
bridges (MUS ICO), bound cross‑bridge distributions in the Huxley model are shown as solid green lines, and Huxley PL as 
dashed red lines.
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Figure S3. Three-state model predictions of transient velocities and cross-bridge distributions after a quick release to isotonic 
force at F/Fo = T/To = 0.6 and 0.4. (A) Evolution of velocities after a quick release to isotonic force of F/Fo = 0.6 predicted by MUS 
ICO (black line), Duke (green line), and Duke PL (red line). The displacements after release are the same because the SE components 
of Duke and Duke PL models match the effect of the myosin and actin filaments from MUS ICO (inset). (B) Velocity evolution after 
release to at F/Fo = 0.4. (C) Cross‑bridge distributions at times tQRel = 0+, 20, and 200 ms after release to F/Fo = T/To = 0.6 (left col‑
umn) and to F/Fo = T/To = 0.4 (right column), where black bars represent weakly bound cross‑bridges and red bars the post‑power 
stroke bound myosins (MUS ICO). Duke state probability density distribution functions are shown as solid lines (weakly bound as a 
green line and post‑power stroke a dark green line) and Duke PL as dashed lines (pink and cyan, respectively).
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Figure S4. Two-state model predictions of velocities and distributions for shortening velocities of 63.5 and 215.5 nm/s (i.e., 
0.04 and 0.133 of vmax) that correspond to MUS ICO velocities for F/Fo = T/To = 0.6 and 0.4, respectively. (A) Evolution of 
velocities after a quick release to isotonic force to match the steady‑state velocity predicted by MUS ICO at F/Fo = 0.6 (black line), 
Huxley 1957 (green line), and Huxley PL (red line). The displacements after release are significantly different because the quick re‑
leases in Huxley and Huxley PL simulation models were different in order to match the steady‑state velocities of all three models 
(inset). After an initial transient, the slopes of the force‑displacement lines are about the same, reflecting the same steady‑state ve‑
locities. (B) Velocity evolution after quick release to isotonic force to match steady‑state velocity predicted by MUS ICO at F/Fo = 0.4. 
(C) Cross‑bridge distributions and state probability density distribution functions at times tQRel = 0+, 20, and 200 ms after release to 
achieve steady‑state velocity of 63.5 nm/s (left column) and of 215.5 nm/s (right column).
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Figure S5. Three-state model predictions of velocities and distributions for shortening velocity of 259 and 445 nm/s (i.e., 0.17 
and 0.29 of  vmax) that correspond to MUS ICO velocities for F/Fo = T/To = 0.6 and 0.4, respectively. (A) Evolution of velocities 
after a quick release to isotonic force to match the steady‑state velocity predicted by MUS ICO at F/Fo = 0.6 (black line), Duke (green 
line), and Duke PL (red line) models. The comparisons of early phase of velocity transients and the evolution of the displacements 
for all three models are shown as insets. (B) Velocity evolution after a quick release to isotonic force to match the steady‑state veloc‑
ity predicted by MUS ICO at F/Fo = 0.4. (C) Cross‑bridge distributions and state probability density distribution functions at times 
tQRel = 0+, 20, and 200 ms after the release to achieve steady‑state velocity of 259 nm/s (left column) and of 445 nm/s (right column).
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Figure S6. The cross-bridge distributions tQRel = 0+, 5,10, 20, 80, and 200 ms after a quick release to zero isotonic load for 
model, where black bars represent weakly bound cross-bridges and red bars the post-power stroke bound myosins (MUS ICO). 
Duke state probability density distribution functions are shown as solid lines (weakly bound as a green line and post‑power stroke a 
dark green line) and Duke PL as dashed lines (pink and cyan, respectively).
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Figure S7. Three-state model (Duke) predictions of the evolution of the cross-bridge distributions during T1 − T2 transitions 
after a quick decrease in length of 7.35 nm. The bound cross‑bridge distributions and state probability density distribution func‑
tions at times   t   T  1   T  2      = 0+, 0.1, 0.5, …, up to 200 ms after T1 change of length. Duke state probability density distribution functions are 
shown as solid lines (weakly bound as a green line and post‑power stroke a dark green line) and Duke PL as dashed lines (pink and 
cyan, respectively).



Interfilament binding of tethered molecules | Mijailovich et al.38

Table S1. Values of key sarcomere lattice parameters

Parameter Symbol Value

Sarcomere slack length 2.175 µm
Lattice interfilament distancea d10 37 nm
Myosin filament lengthb ∼1.58 µm
Number of crownsb 50
Crown spacingb 14.3 nm
Myosin radius rm 7.8 nm
Actin filament lengthc ∼1 µm
Number of actin monomers 364
Inter monomer spacingd 2.735 nm
A strand half periodd 35.55 nm
Actin radius is ra = 3.5 ra 3.5 nm
Filament moduli (E × A)
Actind,e Ka 0.65 × 105 pN
Myosind Km 1.32 × 105 pN
Series elastic component (SE)
SE Huxley 1957 and PLf   K  SE  Hux  144 pN/nm

SE Duke and PLf   K  SE  Duke  198 pN/nm

Model parameters used in this study are shown.
aMatsubara and Elliott (1972) and Millman (1998).
bLuther et al. (2008).
cFrog sartorius muscle Burgoyne et al. (2008).
dHuxley et al. (1994), Wakabayashi et al. (1994), and Prodanovic et al. (2016).
eKojima et al. (1994).
fChosen to match the filament elasticity from MUS ICO.

Table S2. Values of key cross-bridge kinetic parameters and constraints

Parameter Symbol Value

Huxley 57 and PL parameters
Myosin–actin binding rate f 43.3 s−1

Myosin detachment rate g1 10 s−1

Myosin detachment rate 2 g2 209 s−1

Cross-bridge distortion displacement scale h 15.6 nm
Piazzesi–Lombardi length of binding region  
𝓡 

  𝓁  ℛ   15.6 nm

The Zahalak factor for x ≥ hZah = 15.6 nma fZah 1.8
Cross-bridge stiffnessa κ 0.58 pN/nm

Duke and Duke PL parameters
Free energy gain ΔGbind 3 kBT

ΔGstroke 15 kBT
Myosin–actin binding ratea kbind 170 s−1

Power stroke rate (cap at xo = −1.5 nm)   k  stroke  cap   1,000 s−1

ADP release/detachment ratea   k  ADP  o   56 s−1

Power strokea d 10.6 nm
Second power strokea δ 0.9 nm
Piazzesi–Lombardi length of binding region  
𝓡 b

  𝓁  ℛ   9.4 nm

Cross-bridge stiffness κ 1.3 pN/nm

Duke and Duke PL original parameters
Myosin–actin binding rate kbind 40 s−1

Power stroke rate (cap at xo = −1.5 nm)   k  stroke  cap   1,000 s−1

ADP release/detachment rate   k  ADP  o   80 s−1

Power stroke d 11 nm
Second power stroke δ 0.5 nm

Huxley 1957 parameters are taken from Huxley (1957), and Duke parameters are taken from Duke (1999) unless differently denoted.
aChosen to match experimental data.
bValue chosen to provide responses close to MUS ICO predictions.
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