322 research outputs found
Atmospheric Response to the North Pacific Enabled by Daily Sea Surface Temperature Variability
Oceanâatmosphere interactions play a key role in climate variability on a wide range of time scales from seasonal to decadal and longer. The extratropical oceans are thought to exert noticeable feedbacks on the atmosphere especially on decadal and longer time scales, yet the large-scale atmospheric response to anomalous extratropical sea surface temperature (SST) is still under debate. Here we show, by means of dedicated high-resolution atmospheric model experiments, that sufficient daily variability in the extratropical background SST needs to be resolved to force a statistically significant large-scale atmospheric response to decadal North Pacific SST anomalies associated with the Pacific Decadal Oscillation (PDO), which is consistent with observations. The large-scale response is mediated by atmospheric eddies. This implies that daily extratropical SST fluctuations must be simulated by the ocean components and resolved by the atmospheric components of global climate models to enable realistic simulation of decadal North Pacific sector climate variability
Comment on âNonparametric forecasting of low-dimensional dynamical systems â
The comparison performed in Berry et al. [Phys. Rev. E 91, 032915 (2015)] between the skill in predicting the El Niño-Southern Oscillation climate phenomenon by the prediction method of Berry et al. and the "past-noise" forecasting method of Chekroun et al. [Proc. Natl. Acad. Sci. USA 108, 11766 (2011)] is flawed. Three specific misunderstandings in Berry et al. are pointed out and corrected
Recommended from our members
What is the climate system able to do âon its ownâ?
The climate of the Earth, like planetary climates in general, is broadly controlled by solar irradiation, planetary albedo and emissivity as well as its rotation rate and distribution of land (with its orography) and oceans. However, the majority of climate fluctuations that affect mankind are internal modes of the general circulation of the atmosphere and the oceans. Some of these modes, such as El Nino-Southern Oscillation (ENSO), are quasi-regular and have some longer-term predictive skill; others like the Arctic and Antarctic Oscillation are chaotic and generally unpredictable beyond a few weeks. Studies using general circulation models indicate that internal processes dominate the regional climate and that some like ENSO events have even distinct global signatures. This is one of the reasons why it is so difficult to separate internal climate processes from external ones caused, for example, by changes in greenhouse gases and solar irradiation. However, the accumulation of the warmest seasons during the latest two decades is lending strong support to the forcing of the greenhouse gases. As models are getting more comprehensive, they show a gradually broader range of internal processes including those on longer time scales, challenging the interpretation of the causes of past and present climate events further
Similarities between the tropical Atlantic seasonal cycle and ENSO: An energetics perspective
The tropical Pacific and Atlantic Oceans have similar mean states - easterly winds and a zonally sloping thermocline which shoals in the east - but strikingly different sea surface temperature..
Tropical air-sea interaction in general circulation models
An intercomparison is undertaken of the tropical behavior of 17 coupled ocean-atmosphere models in which at least one component may be termed a general circulation model (GCM). The aim is to provide a taxonomyâa description and rough classificationâof behavior across the ensemble of models, focusing on interannual variability. The temporal behavior of the sea surface temperature (SST) field along the equator is presented for each model, SST being chosen as the primary variable for intercomparison due to its crucial role in mediating the coupling and because it is a sensitive indicator of climate drift. A wide variety of possible types of behavior are noted among the models. Models with substantial interannual tropical variability may be roughly classified into cases with propagating SST anomalies and cases in which the SST anomalies develop in place. A number of the models also exhibit significant drift with respect to SST climatology. However, there is not a clear relationship between climate drift and the presence or absence of interannual oscillations. In several cases, the mode of climate drift within the tropical Pacific appears to involve coupled feedback mechanisms similar to those responsible for El Niño variability. Implications for coupled-model development and for climate prediction on seasonal to interannual time scales are discussed. Overall, the results indicate considerable sensitivity of the tropical coupled ocean-atmosphere system and suggest that the simulation of the warm-pool/cold-tongue configuration in the equatorial Pacific represents a challenging test for climate model parameterizations
The implementation of a service-learning component in an organic chemistry laboratory course
Education institutions globally are increasingly expected to explore avenues for the implementation of service-learning into their curricula. A second-year undergraduate organic chemistry laboratory experiment, in which the undergraduate students make azo dyes, can provide a vehicle for a service-learning module in which university undergraduate students then teach students from resource-limited secondary schools how to make azo dyes. Evidence is provided to show how the theory is reinforced for both sets of students through a shared practical experience. The practical application of chemistry is conveyed through the use of the synthetic azo dyes to dye tshirts. The results of this study show that the service-learning experience clearly assists undergraduate students to appreciate the role of chemists in the broader society while at the same time increasing awareness of the inequalities in school education systems
Numerical study of circulation on the inner Amazon Shelf
Author Posting. © Springer, 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ocean Dynamics 58 (2008): 187-198, doi:10.1007/s10236-008-0139-4.We studied the circulation on the coastal
domain of the Amazon Shelf by applying the hydrodynamic
module of the Estuarine and Coastal Ocean
Model and Sediment Transport - ECOMSED. The first
barotropic experiment aimed to explain the major bathymetric
effects on tides and those generated by anisotropy
in sediment distribution. We analyzed the continental
shelf response of barotropic tides under realistic bottom
stress parametrization (Cd), considering sediment granulometry
obtained from a faciologic map, where river
mud deposits and reworked sediments areas are well distinguished,
among others classes of sediments. Very low
Cd values were set in the fluid mud regions off the Amapa
coast (1.0 10-4 ), in contrast to values around 3:5 10-3
for coarser sediment regions off the Para coast. Three-dimensional
experiments represented the Amazon River
discharge and trade winds, combined to barotropic tide
influences and induced vertical mixing. The quasi-resonant
response of the Amazon Shelf to the M2 tide act on
the local hydrodynamics by increasing tidal admittance,
along with tidal forcing at the shelf break and extensive
fluid mud regions. Harmonic analysis of modeled
currents agreed well with analysis of the AMASSEDS
observational data set. Tidal-induced vertical shear provided
strong homogenization of threshold waters, which
are subject to a kind of hydraulic control due to the topographic
steepness. Ahead of the hydraulic jump, the
low-salinity plume is disconnected from the bottom and
acquires negative vorticity, turning southeastward. Tides
act as a generator mechanism and topography, via hydraulic
control, as a maintainer mechanism for the low-salinity
frontal zone positioning. Tidally induced southeastward
plume fate is overwhelmed by northwestward
trade winds so that, along with background circulation,
probably play the most important role on the plume fate
and variability over the Amazon Shelf
- âŠ