93 research outputs found

    The Influence of Markov Decision Process Structure on the Possible Strategic Use of Working Memory and Episodic Memory

    Get PDF
    Researchers use a variety of behavioral tasks to analyze the effect of biological manipulations on memory function. This research will benefit from a systematic mathematical method for analyzing memory demands in behavioral tasks. In the framework of reinforcement learning theory, these tasks can be mathematically described as partially-observable Markov decision processes. While a wealth of evidence collected over the past 15 years relates the basal ganglia to the reinforcement learning framework, only recently has much attention been paid to including psychological concepts such as working memory or episodic memory in these models. This paper presents an analysis that provides a quantitative description of memory states sufficient for correct choices at specific decision points. Using information from the mathematical structure of the task descriptions, we derive measures that indicate whether working memory (for one or more cues) or episodic memory can provide strategically useful information to an agent. In particular, the analysis determines which observed states must be maintained in or retrieved from memory to perform these specific tasks. We demonstrate the analysis on three simplified tasks as well as eight more complex memory tasks drawn from the animal and human literature (two alternation tasks, two sequence disambiguation tasks, two non-matching tasks, the 2-back task, and the 1-2-AX task). The results of these analyses agree with results from quantitative simulations of the task reported in previous publications and provide simple indications of the memory demands of the tasks which can require far less computation than a full simulation of the task. This may provide a basis for a quantitative behavioral stoichiometry of memory tasks

    Kelvin-Helmholtz instability in the presence of variable viscosity for mudflow resuspension in estuaries

    Get PDF
    The temporal stability of a parallel shear flow of miscible fluid layers of dif- ferent density and viscosity is investigated through a linear stability analysis and direct numerical simulations. The geometry and rheology of this Newto- nian fluid mixing can be viewed as a simplified model of the behavior of mud- flow at the bottom of estuaries for suspension studies. In this study, focus is on the stability and transition to turbulence of an initially laminar configuration. A parametric analysis is performed by varying the values of three control pa- rameters, namely the viscosity ratio, the Richardson and Reynolds numbers, in the case of initially identical thickness of the velocity, density and viscosity profiles. The range of parameters has been chosen so as to mimic a wide variety of real configurations. This study shows that the Kelvin-Helmholtz instability is controlled by the local Reynolds and Richardson numbers of the inflection point. In addition, at moderate Reynolds number, viscosity strat- ification has a strong influence on the onset of instability, the latter being enhanced at high viscosity ratio, while at high Reynolds number, the influ- ence is less pronounced. In all cases, we show that the thickness of the mixing layer (and thus resuspension) is increased by high viscosity stratification, in particular during the non-linear development of the instability and especially pairing processes. This study suggests that mud viscosity has to be taken into account for resuspension parameterizations because of its impact on the inflec- tion point Reynolds number and the viscosity ratio, which are key parameters for shear instabilities

    Point Mutations in Aβ Result in the Formation of Distinct Polymorphic Aggregates in the Presence of Lipid Bilayers

    Get PDF
    A hallmark of Alzheimer's disease (AD) is the rearrangement of the β-amyloid (Aβ) peptide to a non-native conformation that promotes the formation of toxic, nanoscale aggregates. Recent studies have pointed to the role of sample preparation in creating polymorphic fibrillar species. One of many potential pathways for Aβ toxicity may be modulation of lipid membrane function on cellular surfaces. There are several mutations clustered around the central hydrophobic core of Aβ near the α-secretase cleavage site (E22G Arctic mutation, E22K Italian mutation, D23N Iowa mutation, and A21G Flemish mutation). These point mutations are associated with hereditary diseases ranging from almost pure cerebral amyloid angiopathy (CAA) to typical Alzheimer's disease pathology with plaques and tangles. We investigated how these point mutations alter Aβ aggregation in the presence of supported lipid membranes comprised of total brain lipid extract. Brain lipid extract bilayers were used as a physiologically relevant model of a neuronal cell surface. Intact lipid bilayers were exposed to predominantly monomeric preparations of Wild Type or different mutant forms of Aβ, and atomic force microscopy was used to monitor aggregate formation and morphology as well as bilayer integrity over a 12 hour period. The goal of this study was to determine how point mutations in Aβ, which alter peptide charge and hydrophobic character, influence interactions between Aβ and the lipid surface. While fibril morphology did not appear to be significantly altered when mutants were prepped similarly and incubated under free solution conditions, aggregation in the lipid membranes resulted in a variety of polymorphic aggregates in a mutation dependent manner. The mutant peptides also had a variable ability to disrupt bilayer integrity

    Development and evaluation of real time RT-PCR assays for detection and typing of Bluetongue virus

    Get PDF
    Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple ‘TaqMan’ fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the ‘Orbivirus Reference Collection’ (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures

    Standards and Practices for Forecasting

    Get PDF
    One hundred and thirty-nine principles are used to summarize knowledge about forecasting. They cover formulating a problem, obtaining information about it, selecting and applying methods, evaluating methods, and using forecasts. Each principle is described along with its purpose, the conditions under which it is relevant, and the strength and sources of evidence. A checklist of principles is provided to assist in auditing the forecasting process. An audit can help one to find ways to improve the forecasting process and to avoid legal liability for poor forecasting

    Has the DOTS Strategy Improved Case Finding or Treatment Success? An Empirical Assessment

    Get PDF
    Background: Nearly fifteen years after the start of WHO's DOTS strategy, tuberculosis remains a major global health problem. Given the lack of empirical evidence that DOTS reduces tuberculosis burden, considerable debate has arisen about its place in the future of global tuberculosis control efforts. An independent evaluation of DOTS, one of the most widely-implemented and longest-running interventions in global health, is a prerequisite for meaningful improvements to tuberculosis control efforts, including WHO's new Stop TB Strategy. We investigate the impact of the expansion of the DOTS strategy on tuberculosis case finding and treatment success, using only empirical data. Methods and Findings: We study the effect of DOTS using time-series cross-sectional methods. We first estimate the impact of DOTS expansion on case detection, using reported case notification data and controlling for other determinants of change in notifications, including HIV prevalence, GDP, and country-specific effects. We then estimate the effect of DOTS expansion on treatment success. DOTS programme variables had no statistically significant impact on case detection in a wide range of models and specifications. DOTS population coverage had a significant effect on overall treatment success rates, such that countries with full DOTS coverage benefit from at least an 18% increase in treatment success (95% CI: 5–31%). Conclusions: The DOTS technical package improved overall treatment success. By contrast, DOTS expansion had no effect on case detection. This finding is less optimistic than previous analyses. Better epidemiological and programme data would facilitate future monitoring and evaluation efforts

    Pyrene-sensitised near-IR luminescence from ytterbium and neodymium complexes.

    No full text
    Ytterbium and neodymium have been shown to exhibit sensitised emission following excitation of pyrene chromophores. Sensitised emission is demonstrated in self-assembled complexes and in azamacrocycle derivatives bearing pendent pyrene groups. Energy transfer in these systems is dependent on the nature of the link between the ligand and the complex

    Structure and heterogeneity of gliadin: A hydrodynamic evaluation

    Get PDF
    A study of the heterogeneity and conformation in solution [in 70% (v/v) aq. ethanol] of gliadin proteins from wheat was undertaken based upon sedimentation velocity in the analytical ultracentrifuge, analysis of the distribution coefficients and ellipsoidal axial ratios assuming quasi-rigid particles, allowing for a range of plausible time-averaged hydration values. All classical fractions (α, γ, ωslow, ωfast) show three clearly resolved components. Based on the weight-average sedimentation coefficient for each fraction and a weight-average molecular weight from sedimentation equilibrium and/or cDNA sequence analysis, all the proteins are extended molecules with axial ratios ranging from ~10 to 30 with α appearing the most extended and γ the least. © 2009 European Biophysical Societies' Association

    How a new behavioral pattern is stabilized with learning determines its persistence and flexibility in memory

    No full text
    International audienceMemory organization should be at times persistent and at others flexible in the face of environmental perturbations. Unlike conceptualizations that bear on the reduction of the mismatch between the memory trace and the model, it is assumed here that changes in the memory system are governed by stability principles. Results of a bimanual coordination learning task indicated that (1) persistent memories are created and stabilized, when the competition between the preexisting (0 and 180 degrees of relative phase) and the to-be-learned (90 degrees ) patterns leads to a qualitative change in the memory layout; (2) transient memories arise without stabilization, when the competition is weaker, leading to a temporary shift of an initially stable pattern (90 degrees ) toward the required value (135 degrees ). These findings call for further examination of the relationship between stability and memory persistence, which might give a new thrust to understanding its neural correlates
    corecore