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Abstract

The temporal stability of a parallel shear flow of miscible fluid layers of dif-
ferent density and viscosity is investigated through a linear stability analysis
and direct numerical simulations. The geometry and rheology of this Newto-
nian fluid mixing can be viewed as a simplified model of the behavior of mud-
flow at the bottom of estuaries for suspension studies. In this study, focus is on
the stability and transition to turbulence of an initially laminar configuration.
A parametric analysis is performed by varying the values of three control pa-
rameters, namely the viscosity ratio, the Richardson and Reynolds numbers,
in the case of initially identical thickness of the velocity, density and viscosity
profiles. The range of parameters has been chosen so as to mimic a wide
variety of real configurations. This study shows that the Kelvin-Helmholtz
instability is controlled by the local Reynolds and Richardson numbers of the
inflection point. In addition, at moderate Reynolds number, viscosity strat-
ification has a strong influence on the onset of instability, the latter being
enhanced at high viscosity ratio, while at high Reynolds number, the influ-
ence is less pronounced. In all cases, we show that the thickness of the mixing
layer (and thus resuspension) is increased by high viscosity stratification, in
particular during the non-linear development of the instability and especially
pairing processes. This study suggests that mud viscosity has to be taken into
account for resuspension parameterizations because of its impact on the inflec-
tion point Reynolds number and the viscosity ratio, which are key parameters
for shear instabilities.

Keywords: Transition to turbulence; Instability, Stratified flows; Mixing and
dispersion; Geophysical Flows.
PACS: 47.20.-k; 47.11.-j; 47.85.-g; 47.51.+a.
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1 Introduction

The motivation of this article is to complement experiments and observations on
the lutocline (the interface between mudflow and water) at the bottom of estu-
aries, in order to get a better understanding of its dynamics and to improve the
parameterizations of the entrainment mass and momentum fluxes. Numerical mod-
els of estuaries (Le Normant, 2000; Cugier and Le Hir, 2002; Le Hir et al, 2011)
deal with pollution or coastal settlement. These models of sedimentary transport
use parameterization of suspended matter fluxes at the bottom boundary condition.
Cohesive materials (muds) present a more complex behavior than non-cohesive ones
(sands) and are much less documented (see McAnally et al, 2007a). As explained by
McAnally et al (2007b), the behavior of mud flows and their dynamical processes are
still misunderstood since “the formulation of constitutive relations are dependent on
empirical relationships based on small data sets”. Concerning mud erosion, different
models have been used, depending on the level of consolidation of the material (or
sediment concentration), size distribution of sediment or erosion depth (Partheni-
ades, 1965; Odd and Cooper, 1989; Srinivas and Mehta, 1989; Neumeier et al, 2008;
Amos et al, 2010). Consolidated muds erosion principally relies on a critical bot-
tom shear whereas fluid mud entrainment also depends on the Richardson number
(Odd and Cooper, 1989; Srinivas and Mehta, 1989). The erosion fluxes computed
in these models depend on the hydrodynamic fields at the mud-water interface such
as the velocity shear or the density stratification. To improve the understanding of
the underlying processes such as erosion, a study of the hydrodynamical processes
governing this interface is necessary. As differents authors focused on turbulent equi-
librium at the interface (Kranenburg and Winterwerp, 1997; Ozdemir et al, 2011),
the transition to turbulence and the role of shear instability, observed on lutoclines
(Adams et al, 1993) and in laboratory experiments (Mehta and Srinivas, 1993), are
studied here for a better understanding of mud flow entrainment.

Shear instability studies of stratified shear flows are abundant in the literature.
Helmholtz (1868) and Kelvin (1871) investigated the configuration of two layers with
vanishing shear thickness. Rayleigh (1879) showed that the velocity profile needs
to have an inflectional point to be possibly unstable in the unstratified case and
generalized the stability analysis to non-zero stratification thickness. From the the-
oretical works of Orr (1907) and Sommerfeld (1908), the equation of perturbations
in a parallel flow, known as the Orr-Sommerfeld equation were derived. Drazin and
Reid (1984) proposed an overview of this commonly named “Kelvin-Helmholtz” or
KH instability. It was shown that a density stratification stabilizes shear flows since
those are stable when the local Richardson number is everywhere greater than 1/4
(Miles, 1961).

Confinement was first explored by Rayleigh (1879): he showed that symmet-
ric boundary conditions have a stabilizing effect on inviscid KH instability. If the
confinement is sufficiently strong, the flow becomes stable (Drazin and Reid, 1984).
Healey (2009) presented the possible destabilizing effect of asymmetric confinement
on absolute instability, although negligible for temporal stability.

The non-linear evolution of the KH instability into an array of corotating vor-
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tices and the development of secondary instabilities has been addressed through
both laboratory and numerical experiments. The two-dimensional evolution of the
instability was presented in Corcos and Sherman (1984) and Patnaik et al (1976).
KH rolls evolve with the development of sub-harmonics and pairing. Fontane and
Joly (2008) focused on the stability for variable density KH rolls. They located the
development of a secondary instability in the vorticity-enhanced braid by computing
possible modes of this secondary instability. Three-dimensionnalisation of the flow
was considered by Corcos and Lin (1984) and mixing efficiency of these instabilities
was presented in Peltier and Caulfield (2003). Staquet (1995) explored 2D configu-
ration finding a new kind of secondary instability, consisting in the development of
a vortex at the inflectional point of the braid. 3D simulations to study secondary
instabilities had been carried by Staquet (2000) and Mashayek and Peltier (2011).
By using observations of an estuarian pycnocline, Geyer et al (2010) proposed a
different behavior of primary billows. Mainly, experiments and simulations were
carried out for low or intermediate Reynolds number whereas in the ocean or in the
atmosphere, the Reynolds numbers are important (of the order of 106). The authors
observed the conservation of the primary structure associated with the development
of secondary shear instability on the braid, mainly responsible for the mixing.

When the thickness of the density profile is larger than the one of the shear, as
often observed in stratified natural fields (Carpenter et al, 2010), the KH instability
can coexist with two other main kinds of instabilities, namely the Taylor and Holm-
boe instabilities. Following the initial work of Taylor (1931) and Holmboe (1962),
Caulfield (1994) defined their domain of development and the characteristics of their
linear growth. Focus is now on their evolution and mixing properties (see Balmforth
et al, 2012).

Alongside with stratified shear instability, instabilities of viscous layered flows
were explored, initially by Yih (1967). For plane Poiseuille-Couette flows of different
viscosities, he observed two different modes: the Tollmien-Schlichting instability
well-known in homogen fluids and a “soft mode”, also denoted by “Yih mode” or
“interfacial mode”. For all Reynolds numbers, the Yih mode is unstable for long
wave disturbances, if the most viscous layer is also the thinnest. The mechanism
of the viscous instability, studied by Hinch (1984) and Hooper and Boyd (1983),
involves the continuity of shear stress at the interface. Malik and Hooper (2005)
explored the behavior of miscible flow layer by opposition to two-fluid flows. He
showed that, contrarily to the case of two-fluid flow, the miscible flow layer behaves
like a homogeneous flow when the viscosity ratio vanishes. If miscible flow layers
present an interface larger than (k∗Re)1/3, there is no interfacial modes and the
stability is determined by shear modes. Govindarajan (2004) also studied miscible
flow layer and observed a third kind of instability, the overlap mode, in addition
the shear and interfacial modes. Diffusion can be destabilizing, as seen in Ern et al
(2003) for continuous but rapidly varying stratification profiles, or in Sahu et al
(2009) for coaxial configurations. In a study of the two layer interface of fluids
with different viscosities and rheologies, Ozgen et al (1998) explored the influence
of density stratification on the Yih modes.

As KH instability is a non-viscous process, viscosity has little influence on the
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development of the primary billows. However, when viscous diffusion can no longer
be neglected as compared with inertia, the development of this instability is inhib-
ited for intermediate Reynolds numbers. To our knowledge, the influence of viscous
and density stratifications on the evolution of the instability and its final mixing is
not documented in the literature. Some works like Govindarajan (2004) give infor-
mations on the influence of miscible interface of viscosity in coaxial configurations,
but do not focus on its influence on KH modes.

In order to improve the understanding of the processes acting at the lutocline,
such as entrainment, we present here a two-dimensional study of the hydrodynam-
ical processes governing this interface, by modeling the mud flow by a dense and
viscous Newtonian fluid. In the present work, we focus on profiles of same thickness
for density, viscosity and velocity in order to examine, more particularly, the influ-
ence of viscosity stratification on Kelvin-Helmholtz instabilities and final thickness
of the mixing layer. The model equations, the flow configuration and the numer-
ical solvers are presented in Section 2. Results of the linear development of the
instability are presented in Section 3. Section 4 presents the non-linear evolution of
the instability through 2D direct numerical simulations, including a discussion on
possible three-dimensional effects. Conclusions are given in the final section and a
detailed description of the method used for the linear stability study is given in the
appendix.

2 Equations and numerical approaches

2.1 Equations for the modeling of mud flows

Mud particles, whose diameter is under 60μm, present a Stokes number of the order
of 10−4. However, for rapid events such as resuspension, they can be considered
inertial. Thus, in the present work, mud is modeled by a homogeneous fluid of
higher density and viscosity than water, in the presence of gravity g. With these
assumptions, the flow is governed by the following equations:

∇ · u = 0 ,
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ g +

1

ρ
∇ ·

[
μ
(
∇u+ t∇u

)]
, (1)

∂φ

∂t
+∇ · (φu) = 0, (2)

ρ = φ ρ1 + (1− φ) ρ2, μ = φμ1 + (1− φ)μ2, (3)

which links the incompressible Navier-Stokes equations (1) for the pressure p and
the velocity field u = (u, v, w), to the transport equation of volume fraction φ of the
mud flow in the fluid. Local properties of the fluid, such as density ρ and molecular
dynamic viscosity μ, are calculated from this volume fraction φ. The two following
fluids are considered: water, of density ρ2 and dynamic viscosity μ2, and mud flow,
modeled by a Newtonian fluid of density ρ1 > ρ2 and viscosity μ1 ≥ μ2. In this
configuration, density and viscosity are linear functions of the volume fraction φ and,
therefore, vary in the same manner. We have chosen the case of an infinite Schmidt
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number: mud diffusion in water is neglected compared to momentum diffusion. This
explains the absence of diffusion term in Equation (2) dealing with the transport
of the volume fraction. This choice is consistent with the fact that mud particle
diffusion is weaker than salt diffusion, which is itself less important than viscosity
by a factor of Pr ∼ 700, in laminar configurations, where Pr is the salt-stratified
water Prandtl number. This choice is rather atypical for fine sediment modeling.
If the flow were no longer considered laminar, mass diffusion could no longer be
neglected.

2.2 Flow configuration

Lets us consider a domain of length L and height H = 3 m. Here x (resp. z) is
the streamwise (resp. vertical) direction. This domain is filled at the bottom by a
horizontal layer of mud, the characteristic thickness of which being h = 1 m. The
initial flow configuration is depicted in figure 1.

H 

L 

z 

0 

h 

x 

Water 

Mud flow 

0 

u 
_ 

Figure 1: Initial flow configuration. Streamwise velocity u, density ρ and viscosity
μ are function of z.

We consider a base flow of the form u = (ū(z), 0, 0) and φ = φ̄(z), in which
the pressure is hydrostatic. We suppose that ū(z) and φ̄(z) are monotonous and
differentiable functions with respective extreme values ū = u1 and φ̄ = 1 at the
bottom of the domain, and ū = u2 and φ̄ = 0 at its top, with u1 < u2. We assume
that the two profiles have a single inflection point at z = h. In other words, we
neglect the effect of friction at the bottom and top boundary. This is reasonable
since we are interested by shear-induced resuspension in the region close to the
interface z = h . We then define the “inflection point thicknesses” associated with
each velocity and volume fraction profiles by

δu =
u2 − u1

2 ū′(h)
and δφ =

1

2 φ̄′(h)
, (4)

where the prime denotes the z-derivation. In the present work, we assume δu and
δφ to be equal to a same value denoted by δ. The most general case of δu �= δφ is
left for future work.
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Figure 2: Initial profiles of u(z), ρ(z) and μ(z) on a portion z ∈ [0.9 m, 1.6 m] with
h = 1 m, 4 δ/

√
π = 0.3 m and λ = 0.1.

To model base flows representative of the density, viscosity and velocity fields
observed at water-mud flow interface, we consider the group of functions F (λ, Z)
defined by:

F (λ, Z) =

⎧⎨
⎩

λ
[
1 + erf

(
Z
λ

)]
if Z ≤ 0,

1− (1− λ)
[
1− erf

(
Z

1−λ

)]
if Z ≥ 0,

(5)

where Z is a non-dimensional vertical coordinate, the origin of which is located
at the interface. The dimensionless parameter λ controls the asymmetry between
both sides of the inflection point (figure 2). Symmetrical profiles of the gradient
correspond to λ = 0.5. For λ < 0.5 (resp. λ > 0.5), the lower part is thinner (resp.
thicker) than the upper part. One can easily check the continuity of the profiles and
its derivatives around this point. We then defined the base flow and volume fraction
by

ū(z) = u2 F

(
λ,

z − h

δ

√
π

4

)
and φ̄(z) = 1− F

(
λ,

z − h

δ

√
π

4

)
, (6)

where δ = δu = δφ is consistent with the definitions of Equation (4).
These profiles are considered here as quasi-steady states of (1)-(3) since we as-

sume that the growth time of their instabilities is small compared to the diffusion
time. Such an assumption will be verified a posteriori by comparing the growth of
the equilibrium stability analysis to the one given by the direct numerical simula-
tions. As shown later, both approaches lead to the same growth rate, giving further
support that the present quasi-steady state hypothesis is justified.
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The empirical erf(Z) functions qualitatively model a simple shear. As we con-
sider profiles with high viscosity stratification at the interface, associated with shear
velocity profiles, an important variation of the local Reynolds number is observed
through the interface. In the upper layer, high Reynolds number implies turbulent
flow associated with high turbulent diffusion. At the inflection point and in the
lower layer, smaller Reynolds number induces laminar flow (in the context of es-
tuarine parameters). This evolution of the Reynolds number motivates the choice
of the present base flow profiles, which are adapted to high viscosity stratification.
Moreover, they are also chosen because they closely mimic the ones observed in
practical situations (see Mehta et al, 1989; Wolanski et al, 1989; Adams et al, 1993).
Then, as laminar flow is supposed at the interface for high viscosity stratification,
the model is based on a laminar Schmidt number, of high value (as previously ex-
plained, an infinite Schmidt number is chosen). This is consistent with the following
results showing that the key parameters are situated at the inflection point. How-
ever, during the development of shear instability and the non-linear transition of this
interfacial layer to turbulence, the direct numerical simulation code will reproduce a
mixing by eddies, leading to an effective Schmidt number in this region of the order
of the unity, reproduced by simulations. The main contribution of the upper layer is
to inject some perturbations into the region of the shear layer which is the laminar
zone around the inflection point. This effect is implicitly taken into account in the
present evolution of the interface.

In the following, we choose as a reference case λ = 0.1 and 4 δ/
√
π = 0.3 m. A no-

slip (resp. free-slip) condition is imposed for the velocity at the bottom (resp. top)
boundary while zero normal gradient is imposed for φ. Periodic boundary conditions
are imposed along the streamwise direction. A zoom of the corresponding profiles
for ū(z), ρ̄(z) and μ̄(z) is displayed in figure 2.

With the present assumptions, the flow is described by four dimensionless pa-
rameters, namely,

At =
ρ2 − ρ1
ρ2 + ρ1

, Re =
4 δ√
π
uh

ρh
μh

, Ri = 2 δ
g

ρh

(ρ2 − ρ1)

(u2 − u1)2
, W = log10

(
μ1

μ2

)
, (7)

where uh = ū(h), ρh = ρ̄(h) = (ρ2 − ρ1)λ+ ρ1 and μh = μ̄(h) = (μ2 − μ1)λ+ μ1 are
respectively the velocity, the density and the viscosity of the fluid at the interface
z = h. The Reynolds number Re and the gradient Richardson number Ri are
computed at the location of maximum density gradient, i.e. at the interface. The
viscosity ratio between mud flow and water is expressed by its decimal logarithm
W . Excepted otherwise mentioned, the Atwood number is fixed to At = 0.15 in
this study and the Reynolds number ranges in Re ∈ [1, 106]. It is important to
note that the chosen Reynolds number is computed at the inflection point, in the
interface layer, and so principally depends on mud viscosity. With this choice, the
value of this interfacial Reynolds number is lower than the corresponding Reynolds
number based on the velocity of the less viscous region. In addition, only the
initial linear development of the instability was simulated for the largest Reynolds
numbers investigated here, namely Re = 105 and 106 because of the limited spatial
resolution of the present Navier-Stokes simulations. Since we focus on instabilities,
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the Richardson number will be varied in a range Ri ∈ [0, 0.3]. The dimensionless
number W varies from 0 to 3, which corresponds to a viscosity ratio varying from
1 to 103. This present range of parameters can be view as taking ρwater = ρ2 =
1000 kg.m−3 and μwater = μ2 = 10−3 Pa.s, a concentration in the range [0, 580] g.l−1

corresponding to a range of density [0, 1360] kg.m−3 and viscosity [10−3, 1] Pa.s and
a characteristic velocity in the range [0, 2.5] m.s−1. These values are typical of what
is measured in estuaries (Hardisty, 2007).

2.3 Description of the two numerical approaches

2.3.1 Linear stability solver

The linear stability code LiSa, developed by Antkowiak and Brancher (2007), is used
to obtain a global vision of the problem. This code solves the system (1-3) linearized
around the base flow given by Equation (6). Given such a parallel base flow and
fixed values for the control parameters and the horizontal wavelength, LiSa computes
the eigenvalues and their associated modes. The matrices to diagonalize are built
through a spectral method based on a Chebyshev polynomial decomposition of the
fields in the vertical direction. Therefore, one can extract from the spectrum the
most unstable mode and its growth rate. Two versions of the code are used. The
first one relies on a real mapping between the Gauss-Lobatto grid points and the
physical domain, developed for this specific problem. The second version, following
the idea of Fabre et al (2006), uses a complex mapping between the physical and
spectral spaces that allows to improve the numerical convergence for the eigenvalues
in some configurations (see Appendix for more detail).

2.3.2 Navier-Stokes solver

The JADIM code, developed at IMFT (Institut de Mécanique des Fluides de
Toulouse), solves the Navier-Stokes equations (1-3) for variable-density, variable-
viscosity and incompressible flows. Equations for the primitive fields (velocity, pres-
sure) are solved by a finite-volume method. The code is second order accurate in
space and time (Calmet and Magnaudet, 1997; Legendre and Magnaudet, 1998).
A third order Runge-Kutta temporal scheme is combined to a semi-implicit Crank-
Nicolson scheme for diffusive terms. The equations are discretized using second-order
centered differences with staggered variables. The transport equation of the volume
fraction is discretized using a WENO (Weighted Essentially Non Oscillatory) scheme
(Jiang and Shu, 1996). The present version of the solver has been validated for a
viscosity gradient by Bonometti et al (2008) and for a density gradient by Hallez
and Magnaudet (2009) in a context of gravity currents. As Bonometti et al (2008)
use a FCT (Flux Corrected Transport) scheme and Hallez and Magnaudet (2009)
a centered scheme for transport equation of the volume fraction, the choice of a
WENO scheme is justified by coexistence in our configuration of smooth and steep
gradients. This choice allows for both stability of the scheme and accurate transport
of the volume fraction.
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3 Linear development of the instability

3.1 Notations for the temporal stability analysis

Linear stability analyses are performed by linearizing Equations (1-3) around the
general base flows ū(z) and φ̄(z) defined at the beginning of Section 2.2. Because of
the invariance of the system with time, streamwise and spanwise directions, small
perturbations are sought as superpositions of modes of the form:

A(x, y, z, t) = a(z) ei(kx+βy)eσt−iωt ,

where A = (û, v̂, ŵ, p̂, φ̂) is the perturbation field, k and β the wavenumbers in the
streamwise and spanwise directions, ω the frequency and σ the growth rate and
a(z) an unknown vectorial profile. Perturbations are represented by the velocity
field (û, v̂, ŵ), the pressure p̂, the density ρ̂ and the viscosity μ̂.

In the following, normalization is performed with (u2 − u1)/ 2 for velocity units
and δ for length units. The wave vector is then normalized as k∗ = k δ and β∗ = β δ,
the frequency as ω∗ = 2ω δ/(u2 − u1), the growth rate as σ∗ = 2 σ δ/(u2 − u1) and
the time as t∗ = 2 t δ/(u2 − u1).

3.2 LiSa validation and series of profiles

The linear stability code LiSa has been first validated on the case of an inviscid and
density stratified shear flow in an unbounded domain.

For this validation, we refer to Hazel (1972) who considers the following profiles:
ū = u0 tanh(z/δ) and ρ̄ = ρ0 exp[−At tanh (z/δ)] under the Boussinesq approxi-
mation. Here, we consider instead ū = u0 + u0 tanh(z/δ) which does not change
the temporal stability analysis, except for a shift in the phase velocity. We choose
a small Atwood number (At = 0.024) in order to approximate the density pro-
file by ρ̄ ∼ ρ0[1 − At tanh(z/δ)]. Since Hazel (1972) focuses on inviscid fluid, we
choose a small viscosity value μ = 10−3 Pa.s that leads to Re ∼ 3 105. The choice
u0 ∼ 1 m.s−1 (varying with Ri) and ρ0 = 1000 kg.m−3 is arbitrary since only the
dimensionless numbers are considered for this validation.

Ri = 0.01 Ri = 0.05 Ri = 0.1 Ri = 0.15 Ri = 0.2
Hazel (1972) 0.1838 0.1594 0.1259 0.0889 0.0472
LiSa code 0.1838 0.1593 0.1259 0.0889 0.0471

Table 1: Maximum normalized growth rate σ∗ for various Richardson numbers Ri.
The results of Hazel (1972) are compared to the results of the linear stability code
LiSa for At = 0.024.

Table 1 presents a validation on the maximum growth rate for different Richard-
son numbers in the case of unbounded boundary conditions. The results are consis-
tent with Hazel (1972), up to the precision of the numerical method.
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Figure 3: Isocontours of the growth rate σ∗ as a function of k∗ and Ri for high
Reynolds numbers. (a) Hazel (1972)’s tanh profiles with vanishing boundary condi-
tions at infinity, (b) tanh profiles in a bounded domain, (c) symmetric erf profiles in
a bounded domain, (d) asymmetric erf profiles in a bounded domain. Line with cir-
cles: theoretical neutral curve, bold line: real mapping, thin line: complex mapping;
only converged eigenvalues are shown.
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The other growth rates are shown on Figure 3(a) as a function of the wavenumber
k∗ and the Richardson number Ri (iso-contours are interpolated from a 50 × 50 grid
in this diagram). Only converged eigenvalues are represented, which explains lack
of eigenvalues at some locations. The thin parabolic line with circles in Figure 3(a)
described by the equation Ri = k∗(1−k∗) represents the neutral curve (Hazel, 1972).
Good agreement on this case is observed in spite of some expected difficulties to
access the low growth rates, particularly for large wavenumbers.

Starting with the Hazel’s configuration (Figure 3(a)), we have then considered a
progressive transition (Figures 3(b) and 3(c)) towards our reference case with asym-
metric erf functions (Figure 3(d)). For these new cases (b, c and d), the Bousinesq
approximation is no longer used and the Atwood number is set to At = 0.15. The
Reynolds number is set to Re ∼ 5 105. For all cases of Figure 3, the iso-contours
that are represented with bold lines are obtained with a distribution of spatial grid
points obtained with a classical mapping (“real mapping”, see Appendix). The part
represented with thin lines has been computed with a different mapping (“complex
mapping”, see Appendix), in which the coordinates of the grid points lie in the
complex plane.

Figure 3(b) deals with tanh profiles in a bottom no-slip and top free-slip bounded
domain described in Section 2.2. We have noticed that replacing no-slip by free-slip
boundary conditions at the bottom led to no visible difference in the results. In
agreement with Hazel (1972), confining the flow increases the growth rate for small
wavenumbers and only the large waves are “aware” of the presence of the boundary.
On Figure 3(c), the base function is changed from tanh to erf. The modification
of the sharpness of the interface acts on higher wavenumbers. The marginal curve
is no longer parabolic and does not pass through wavenumber k∗ = 1. Finally,
Figure 3(d) presents our reference study case as introduced at the end of Section
2.2. This configuration corresponds to an asymmetric erf function at the interface for
which the asymmetry parameter is fixed to λ = 0.1 and the viscosity is homogenous
(W = 0). In this case, the asymmetry of the interface increases the growth rate at
large wavenumbers.

3.3 Characterization of the stability of the interface

We now focus on the reference erf profile case with λ = 0.1 and densities fixed to
ρ1 = 1360 kg.m−3 and ρ2 = 1000 kg.m−3, corresponding to an Atwood number
At = 0.15. No-slip (resp. free-slip) boundary conditions at the bottom (resp. top)
of the z ∈ [0, H] domain with H = 3 m are considered. The interface lies at h = 1 m
and “inflection point thickness” is such that 4 δ/

√
π = 0.3 m. Since u1/u2 	 1, the

variations of the Richardson number Ri, the Reynolds number Re and the viscosity
ratio W only trace back the variations of the velocity u2 and the viscosities μ1 and
μ2.

For homogeneous flows, the Squire theorem (Squire, 1933) ensures that the most
unstable perturbations first appear as 2D modes (β = 0). Since such a theoretical
result does not exist for the present stratified flow, we have performed an explo-
ration of 3D configurations that suggests that this might be also the case here (see
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Figure 4: Eigenvalues spectrum in the plane (ω∗, σ∗) for Re = 102, Ri = 0.15,
W = 3 and k∗ = 0.46. The circles correspond to converged eigenvalues.

Section 4.3). For this reason, we restrict the present study to 2D perturbations.
A typical spectrum of eigenvalues computed with LiSa is displayed in Figure 4 for

a particular set of parameters. The vertical structure of the most unstable eigenmode
are displayed in Figure 5. The influence of the base flow asymmetry, introduced by
the parameter λ, is observed on the structure of the mode. The instability is not
located on the inflection point of the profile at z = h = 1 m, as it would be the case
for λ = 0.5, but a little higher at z = 1.07 m. Asymmetry also leads to a stretching
of the modes above the interface and a contraction below.

These modes have been compared to modes obtained with a smaller and no
viscosity ratio between fluids, for a constant Reynolds number at the interface. The
viscosity ratio has only a small influence on the vertical position or the general
shape of the modes. For pressure and density, the viscosity ratio slightly increases
the amplitude of perturbation profiles. For velocities, the increase of the viscosity
ratio slightly decreases the amplitudes of perturbation under the interface where the
fluid viscosity is increased, and increases these amplitudes over the interface where
viscosity is decreased. These variations between different viscosity ratios are small
(less than 10%).

3.4 Parameters sensitivity

The dependency of the growth rate σ∗ at Re = 102 with the Richardson number is
displayed on Figure 6 for W = 3. Bold and thin lines correspond respectively to the
real and complex mappings as described for Figure 3. As pointed out in the previous
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Figure 5: Vertical profiles of the most unstable mode at Re = 102, Ri = 0.15, W = 3
and k∗ = 0.46 for: (a) vertical velocity, (b) streamwise velocity, (c) pressure and (d)
density, normalized by the maximum of the streamwise perturbation. Dashed - - :
real part. Dotted-dashed -·- : imaginary part. Plain - : absolute value.
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Figure 6: Isolines of the normalized growth rate σ∗, as a function of the non-
dimensional wavenumber k∗ and the Richardson numberRi forW = 3 andRe = 102.

section, the increase in the growth rate observed for small wavenumbers comes from
confinement. Increasing profiles asymmetry at the interface implies a larger range of
unstable wavenumbers for large wavenumbers. Smaller wavelengths are destabilized
by the sharper gradient in the lower part of the interface, their characteristic length
being λδ. Figure 7, which shows isocontours of the growth rates for W = 3 in the
wavenumber and Reynolds number plane, illustrates the influence of the Reynolds
number. For Reynolds number higher than 103, the growth rate no longer depends
on the viscosity, which is a known feature of KH instabilities. But for Reynolds
numbers smaller than this value, we observe a greater growth rate accompanied by
a larger interval of unstable wavenumbers: the viscosity has a destabilizing influ-
ence. On Figure 8, isocontours of the growth rate for different viscosity ratios W are
presented. At first, a good correlation between the curves is observed, prooving the
relevance of the chosen definition of the Reynolds number. For Reynolds numbers
higher than 103, the growth rate does not depend on the viscosity ratio, which is
consistent with the fact that the stability properties are independent of viscosity at
high Reynolds numbers. To illustrate the small Reynolds number features, a section
of this diagram at Re = 102 is shown on Figure 9. We can note that a larger vis-
cosity ratio between fluids increases this destabilizing effect previously observed for
viscosity. Figure 10, which represents the evolution of the maximum KH growth rate
with respect to Reynolds number, clearly shows that viscosity stratification changes
the location of the initial instability. It also suggests a lower critical Reynolds (of
O(10)) for the development of the instability for large viscosity ratios.
On Figures 7 and 8, one can notice an instability of different nature for low Reynolds
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Figure 7: Isocontours of the normalized growth rate σ∗, as a function of the non-
dimensional wavenumber k∗ and the Reynolds number Re for Ri = 0.15 and W = 3.

numbers and low wavenumbers. As in Yih (1967), we observe a long wave insta-
bility in the present case of two layers of fluids with the thinnest being the most
viscous. Recent work of Govindarajan (2004) on concentric pipe flow of miscible
fluid of different viscosities presents similar results. The mode observed in our con-
figuration might be the “overlap” mode, a deformation of the Tollmien-Schlichting
mode developing in a variable viscosity region, close to the Yih mode observed for
immiscible interfaces. Since we focus on the KH instability, no further investigation
of this instability is presented here.
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Figure 8: Isocontours of the normalized growth rate σ∗, as function of the non-
dimensional wavenumber k∗ and the Reynolds number Re, for Ri = 0.15 and for
W ∈ {0, 1, 2, 3}.
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Figure 9: Normalized growth rate σ∗ as function of the non-dimensional wavenumber
k∗, for Ri = 0.15, Re = 102 and W ∈ {0, 1, 2, 3}.
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4 Non-linear evolution of the instability

The linear stability analysis of the previous section is now complemented with direct
numerical simulations (DNS). The velocity, density and viscosity fields of the most
unstable mode are used to initialize 2D simulations in a streamwise periodic domain.
The nonlinear regime subsequent to the linear growth is investigated.

4.1 Preliminary comparison between Navier-Stokes simula-
tions and linear stability results

We first focus on the linear growth, i.e. the first stage of development of the instabil-
ity. We choose k∗ = 0.46, which leads to a x-period L = 2π/k ∼ 1.8 m since k = k∗/δ
and δ = 0.3

√
π/4. The mesh size is fixed to 0.5 cm × 0.5 cm, which corresponds

to a (x, z)-resolution of 364× 600. In Figure 11 is represented the kinetic energy of
velocity perturbations computed from the velocity perturbations û = u− < u >x

through

||û||2 = 1

HL

∫ H

0

∫ L

0

[
(u− < u >x)

2 + (v− < v >x)
2
]
dx dy, (8)

where <>x represent space average in the x direction. The choice to subtract
the mean flow computed at the given time, instead of subtracting the initial mean
flow, avoid to take into account diffusion of the mean flow in the amplitude of
perturbations. Various Reynolds numbers were investigated in order to assess the
sensibility of this parameter on the instability growth rate. At early times (t∗ ≤ 15),
the growth of ||û||2 is exponential and independent of Re. This is in agreement with
the linear stability results, which predict the growth rate σ∗ to be independent of
Re for Re ≥ 103 (Figure 10). At longer times (15 ≤ t∗ ≤ 50), the growth rate
of the instability still follows an exponential trend at Re ≥ 103 while at lower Re,
the kinetic energy is significantly lower by an order of magnitude, approximately.
At long times (t∗ ≥ 50), the kinetic energy of the perturbations saturates and
oscillates around a plateau value at 10−2 for Re ≥ 103 and 10−3 for Re = 102. The
growth rates obtained from the direct numerical simulations of the linear stability
analysis are presented in Table 2. As expected, when the Reynolds number Re
increases, the dependency with W is no longer visible. For large Reynolds numbers,
the viscosity ratio has no influence on the development of the primary instability
again in agreement with the linear stability analysis results (see e.g. Figure 10).
A quantitative agreement is observed with linear stability results, the differences
being less than 1% for Re ≥ 104. This indicates that, with the present resolution,
the Navier-Stokes solver is able to accurately capture the instability of the mixing
layer within the investigated range of parameters.

For low Reynolds numbers, the Navier-Stokes simulations slightly differ from
the linear stability predictions because the hypothesis of a quasi-steady base flow
is no longer valid. A characteristic time of the instability, based on growth rate, is

τinst =
2 δ

σ∗(u2−u1)
while a characteristic time for base flow diffusion is τν = (λ δ)2ρh

μh
.
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Growth rate σ∗ Re = 102 Re = 103 Re = 104 Re = 105 Re = 106

W = 0 Linear stability 0.5688 0.5532 0.5521 0.5520 0.5520
DNS × 0.5039 0.5485 0.5509 0.5511

W = 3 Linear stability 0.6098 0.5567 0.5525 0.5521 0.5520
DNS 0.5848 0.5482 0.5504 0.5507 0.5500

Table 2: Normalized growth rate σ∗ for various Reynolds numbers Re and viscosity
ratios W (Ri = 0.15 and k∗ = 0.46), obtained from DNS and compared with the
linear stability analysis.

The ratio between those characteristic times is:

τinst
τν

=
2 δ

σ∗(u2 − u1)

μh

(λδ)2ρh
=

1

Re

8√
πλσ∗ .

τinst/τν ∼ 0.9 for Re = 100, which means that the mean flows diffuses on a time scale
comparable to the one of the instability development. Contrary to the higher Re
regimes, the base flow can no longer be considered as steady during the development
of the instability. Therefore, the growth rate of the perturbation is exponential
only during a short times and is rapidly impeded by the diffusion of the base flow
long before the non-linear saturation observed for high Reynolds numbers occurs.
Note that at the end of linear growth, the streamwise-averaged density profile was
observed to be quasi-steady for all Re while the streamwise-averaged velocity profile
kept diffusing in regions where gradients are large for Re ≤ O(102) (not shown here).

4.2 Saturation and non-linear evolution of the instability

The subsequent stages of the evolution of the instability are described in this sec-
tion. To highlight the influence of both viscosity and density stratifications, the
reference case Re = 103, Ri = 0.15 and W = 2 is compared to the W = 0 case in
which the viscosity stratification is removed and the Ri = 0.05 in which the density
stratification is decreased. The length of the simulation box is now L = 4 × 2π/k,
corresponding to four spatial wavelengths of the instability (L = 7.263 m) in our
configuration where k∗ = 0.46.

The simulations are realized on a 1496 × 600 mesh, which is refined near the
interface: vertical grid size dz/h = 0.25 10−3 for 0.75 ≤ z/h ≤ 1.5. In the regions
0 ≤ z/h ≤ 0.75 and 1.5 ≤ z/h ≤ 3, dz varies linearly from dz/h = 2.5 10−3 close to
the interface to dz/h = 1.25 10−2 at the top and bottom boundaries. We define the
mixing layer thickness Δ by :

Δ(t) =
1

h

∫ H

0

< ρu >x

(ρ2 − ρ1)(u2 − u1)

[
1− < u >x

(u2 − u1)

]
dz.

The temporal evolution of Δ is displayed in Figure 12, for the reference case together
with a case of no viscosity (weak density) stratification, i.e. W = 0 (Ri = 0.05). In
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Figure 11: Time evolution of the perturbation kinetic energy (‖û‖2) for W = 3,
Ri = 0.15, k∗ = 0.46 and Re = 102, 103, 104 and 105. Time being normalized as
t∗ = 2 t δ/(u2 − u1).

all cases, the temporal evolution of the mixing layer thickness is not monotonous but
is characterized by a succession of plateaus and rapid growths, which are sometimes
followed by a peak. As described later, these peaks are observed during vortex
pairing phenomenon.

Keeping in mind that the evolution of the interface is constrained by the period-
icity of the simulation domain, we can relate the evolution of Δ(t) to the structure of
the flow. For this purpose, circles of Figure 12 correspond to the times at which den-
sity and vorticity fields are extracted for the whole domain and plotted in Figure 13
and Figure 14, vorticity being normalized by uh/δ. At t

∗ ∼ 73 (fig. 13(a)), the KH
rolls reach their maximum of amplitude. Contrarily to non-stratified configurations,
positive vorticity is observed. This vorticity is created by the baroclinic torque, as-
sociated to strong density gradients and the vorticity fields (see Staquet, 1995). The
KH rolls destabilize through an elongation of vorticity braids between the vortices
(Figure 13(b-c)). The braids break up while the vortices are still coherent. This
secondary instability, of the “near-core” type (see Staquet, 1995), consists in the
destabilization by a jet (Figure 13(c) left) near the core of the vortex, leading to the
break up of the braid. This destabilization is followed by the generation of small
vortices (Figure 13(d)). This evolution significantly differs from the case of more
viscous flows, for which the development of sub-harmonics and subsequent pairing
is observed without deformation nor breaking of the vorticity braid (not show here).
The flow is then disorganized with secondary vortices located on the border of the
mixing layer. They are located at a maximum of vorticity, which is more intense
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Figure 12: Time evolution of the mixing layer thickness Δ(t). Results obtained from
direct numerical simulations for Re = 103. The symbols correspond to the different
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(a) t∗ = 73.6

(b) t∗ = 81.8

(c) t∗ = 90.0

(d) t∗ = 98.1

Figure 13: Temporal evolution of KH rolls for W = 2, Ri = 0.15 and Re = 103,
70 ≤ t∗ ≤ 100. Left: density, right: spanwise vorticity. The whole computational
domain is shown.
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on the perimeter of the primary KH eddies. Some of the energy is transferred to
small lengthscales and then dissipated by diffusion. At later times (t∗ ≥ 150), the
flow reorganizes and the main eddies move toward the center of the mixing layer: at
t∗ ∼ 174 (Figure 14(a)), a dark patch of vorticity appears inside the layer. At this
stage, the flow is still composed of four main structures reminiscent of the initial KH
rolls and the thickness of mixing layer has not changed since the end of the linear
growth (Figure 12). Then pairing, or coalescence, occurs: vortices roll around each
other and mix to form larger structures. At t∗ ∼ 205 (Figure 14(b)), on the left part
of vorticity field cartoon, three eddies are clearly seen and begin to roll-up around
each other to form a bigger eddy. On the right side, two others begin the process
of pairing. This stage corresponds to the thickening of the interface observed on
Figure 12 (see the circle at time t∗ = 205.1). Finally at t∗ ∼ 236 (Figure 14(c)),
only three main vortices are present. One pairing has ended while the other are
still going on. During this stage, the thickness of the mixing layer is constant. At
t∗ ∼ 254 (Figure 14(d)), a second pairing (in the center of the figures) is ending.

The comparison of the evolution of the mixing layer with the other configurations,
namely no-viscosity stratification and weak density stratification, give indications on
the influence of the two stratifications. The density stratification, represented by the
Richardson number, is observed to be very influent on the thickness of the interface
(Figure 12). For instance, at t∗ ∼ 150 (resp. 400), the thickness of the mixing layer
is about 30% (resp. 300%) larger in the weak density stratification case (Δ ∼ 0.3
(0.4) at t∗ ∼ 150 and Δ ∼ 0.4 (1.4) at t∗ ∼ 400, for Ri = 0.15 (0.05)). As shown
in §3, decreasing the Richardson number decreases the impact of the stratification
on the development of primary instability and leads to an increase of the growth
rate and eventually to a thicker mixing layer. This is in agreement with the present
observations. The viscosity stratification does not affect the thickness of the mixing
layer at early times (t∗ ≤ 160) while it slightly increases Δ at later times (t∗ > 160)
by about 20%, after vortex pairing has occurred. In both Ri = 0.15 and Ri = 0.05
cases, the saturation of primary instability is followed by the development of small
vortices and a reorganization of the interface. After a time period that is equivalent
for both cases, a first stage of coalescence, rapidly followed by a second stage, are
observed. In the Ri = 0.05 case, the development of the second pairing is hampered
by the size of the simulation box (Figure 15(c-d)).

The comparison between the two Ri = 0.15 simulations with W = 2 and W = 0
(homogeneous viscosity) traces back the influence of viscosity stratification. The
development of the primary instability is not influenced by the viscosity stratifi-
cation, nor is the secondary instability (Figure 16(a) and Figure 13(c)). However,
the viscosity stratification has an influence on the pairing. While a first pairing is
observed at t∗ ∼ 280 (Figure 16(c)) for W = 0, with no subsequent coalescences,
for W = 2, the first pairing is observed at t∗ ∼ 200 and is followed by a new pair-
ing at t∗ ∼ 250 (Figure 14(d)), these pairings presenting different morphologies.
This faster sequence of pairings, enhanced by the viscosity stratification, widens
the interface. Eventually, the thickness of the mixing layer in the viscous-stratified
flow is 20% thicker than in the uniform viscosity case. This present results confirm
that density and viscosity stratification can have a significant influence on the non-
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(a) t∗ = 174.4

(b) t∗ = 205.1

(c) t∗ = 235.8

(d) t∗ = 253.6

Figure 14: Same as in figure 13 for later times 150 ≤ t∗ ≤ 300.
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(a) t∗ = 72.1 (b) t∗ = 127.9

(c) t∗ = 182.7 (d) t∗ = 243.6

Figure 15: Temporal evolution of vorticity field of KH rolls for W = 2, Ri = 0.05
and Re = 103. Vorticity being normalized by uh/δ and presenting the same color-bar
as Fig. 13.

linear development of the mixing layer, thus modifying the thickness of the interface
accordingly.
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(a) t∗ = 90.0 (b) t∗ = 195.5

(c) t∗ = 280.5 (d) t∗ = 386.5

Figure 16: Same as in figure 15 for W = 0, Ri = 0.15 and Re = 103
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4.3 On three-dimensionalisation

In the case of inviscid flows, Squire (1933) has demonstrated that, given a three-
dimensional unstable mode, there exists at least one two-dimensional mode that is
more unstable. This theorem has been generalized to viscous flow (Yih (1955)) as fol-
lows: given an unstable oblique mode, one can find a more unstable two-dimensional
mode at a lower Reynolds number. Therefore, the critical Reynolds number can be
determined considering only 2D-modes. Nevertheless, it is not demonstrated that for
a given unstable Reynolds number, the most unstable mode will be two-dimensional
(see examples in Caulfield (1994) regarding Holmboe instabilities).

In our configuration, a crude three-dimensional exploration has been performed
and tends to confirm the two-dimensional character of the primary instability. Figure
17 displays the growth rate for a finite spanwise wavenumber β∗ = 0.5, and for the
wave vector angle of π

4
with respect to the streamwise direction (i.e. a spanwise

wavenumber β∗ equal to the streamwise wavenumber k∗). For these configurations,
the growth rates are lower than in the 2D case. 2D instabilities grow more quickly:
the flow remains two-dimensional in the primary instability phase.

Nevertheless, the flow eventually becomes three-dimensional at later time. A
series of 3D numerical simulations have been carried out to evaluate the limits of
the 2D approach.

The occurrence of streamwise vortices is observed at t∗ ∼ 220 through the cre-
ation of streamwise tubes of counter-rotating vorticity on vortex sheets. Figure 18
shows isovalues of the streamwise vorticity: each grey level represents the same am-
plitude for vorticity of opposite sign. Comparing with Figure 14(b), it seems that
three-dimensionalisation inhibits vortex pairing. This is in agreement with recent
observations in the ocean by Geyer et al (2010) who observed conservation of a kind
of turbulent primary vortices under the action of secondary instabilities at large
Reynolds number. This suggests that three-dimensional structures may play a role
in the subsequent phase following the initial transient growth of the instability, and
can therefore modify the final thickness of the mixing layer (see Peltier and Caulfield
(2003)). Exploring such effects requires substantial computational resources. This
topic is beyond the scope of the present paper and is left for future work.

5 Conclusion

We have set an idealized model of two layer mud-water flow, based on the incom-
pressible Navier-Stokes equations with variable density and viscosity. This model
aims at representing the hydrodynamic processes that destabilize the interface be-
tween mud flow and water at the bottom of estuaries. In the present study, mud flow
is considered as a Newtonian fluid of high density and viscosity, miscible in water.
At the interface, the mean velocity, density and viscosity profiles are represented by
continuous asymmetric erf-shaped functions. We have performed a linear stability
analysis by exploring a relevant range of control parameters k, Ri, Re and W and
documented the influence of these parameters on the flow. We have complemented
this linear approach with direct numerical simulations, and extended the study to
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(a)

(b)

Figure 17: Growth rate for 3D KH rolls, W = 0, Re ∼ 105. (a): β∗ = 0.5, (b):
β∗ = k∗

Figure 18: Isosurfaces of streamwise vorticity: three-dimensionalisation of the in-
stability at t∗ = 220 of W = 2, Ri = 0.15 and Re = 103.
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the subsequent nonlinear development of the primary Kelvin-Helmholtz instability.
Results suggest that initial development of the instability is mainly controlled by

the local Reynolds and Richardson numbers at the inflection point. The Richardson
number at the inflection point, balancing stratification and shear effect, controls
the development of the Kelvin-Helmholtz instability: Richardson numbers lower
than the critical Richardson number (Ric ∼ 1/4) lead to instability. For large
Reynolds number, we show that there is no influence of the viscosity ratio nor of
the Reynolds number on the linear development of the instability. For values lower
than 103 approximately, the Reynolds number at the inflection point play a role: in
particular, viscosity has a destabilizing influence. Increasing the viscosity ratio W
promotes this destabilizing effect.

Direct numerical simulations reproduce these results in the short timed linear
phase and complement the analysis: for small Reynolds numbers, the hypothesis of
quasi-steady state of the mean flow is no longer justified. Evolution of the mixing
layer with destabilization of the K-H rolls and pairing in the case of strong viscosity
variation has also been presented. As commonly known, the final thickness of the
interface is influenced by the Richardson number. The effect of viscosity stratifica-
tion is also observed: for a given interfacial Reynolds number, viscosity stratification
enhances the thickening of the interface by about 20%. Viscosity ratio influences
the first destabilization of rolls and enhances the pairing occurrence in 2D configura-
tions. Even though the pairing process seems to be inhibited for 3D configurations,
it is likely that the viscosity stratification still enhances the growth of the mixing
layer thickness.

Fully-resolved 3D simulations are needed to further document the evolution of
the mixing layer and the influence of viscosity stratification. Mud viscosity impacts
the linear and non-linear development of KH instability through viscous stratifica-
tion and interfacial Reynolds number. Therefore mud viscosity has to be taken into
account in entrainment parameterization. The types of estuarine systems of interest
tend to evolve through temporal changing of the flow rate, that is they are subject
to varying forcing Reynolds number. Therefore, the constant-Re flows considered in
the present work are somewhat artificial. However, for such time evolving systems,
the present linear stability analysis provides a way to evaluate stability of the in-
terface and quantify the development of KH instabilities. The final thickness of the
interface and vertical profiles will eventually be decisive to quantify bottom shear
and turbulent flux of mass in realistic models.

The Reynolds number used in this study is computed at the cradle of the in-
stability, i.e. at the interface, where viscosity is important. This explains the low
values of this parameter explored by the present DNS simulations. However, this
interfacial Reynolds number may be somewhat low for highly turbulent configura-
tions or for low mud viscosity. In these cases, the results only give a first idea of
the development of KH instabilities in a turbulent flow if one interprets the present
viscosity values as those of a constant turbulent viscosity. In this view, the present
results represent only a part of the interface evolution processes since turbulent mass
diffusion, which can no longer be neglected, has to be taken into account. New sim-
ulations or experiments are needed to confirm the observed behavior of the interface
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in fully turbulent configurations. To obtain even more precise and realistic results,
the viscoplastic rheological behavior of the mud should also be taken into account,
not only as a threshold for resuspension, but also in the evolution of the interface.

Acknowledgment

The first author is supported by a scholarship intended for PhD students funded
by the DGA (Direction Générale de l’Armement). This work has benefited com-
putational means from the Scientific Groupement CALMIP (projet P1016), CINES
(imf6359) and IDRIS (projet 99651), the contribution of which are greatly appreci-
ated.

30



Appendix

In this appendix, we describe the method that we have developed to identify the
discretised K-H modes among spurious modes tracing back the continuous spectrum
of the linear problem.

Characterization of the spurious modes

Spurious modes are characterized by a Chebyshev decomposition of the z-profiles
that is not converged. The associated spurious eigenvalues stand close to the
marginal curve of null growth rate σ∗ = 0. We interpret them as a continuous
spectrum of internal waves trapped in critical layers. A physical hint of these modes
can be caught by considering the refraction of plane internal waves by density strati-
fication and shear. The WKB method describes the evolution of wave packets of the
wave vector k,m(z) in the two-dimensionnal plane (x, z). They form a solution of the

Eikonale equation Ω[k,m(z), z] = Ω0 with Ω(k,m, z) =
√

g
ρr

∂ρ
∂z

k√
m2+k2

+ k u(z) and
Ω0 constant, where ρr is the reference density used in the framework of a Bousinesq
approximation of the Navier-Stokes equations.
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Figure 19: Isovalues of Ω[k,m(z), z] in the (m, z) plane for Ri = 0, 15, k∗ = 0, 8,
zoomed on z ∈ [0.9, 2.3]

Figure 19 presents isovalues of the frequency for fixed wave number, representing
rays of internals waves, in the (m, z) plane. Divergent trajectories are observed and
characterized by horizontals asymptotes (as dotted line for ω = 0.9) with m → ∞
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Figure 20: Growth rate of the two most unstable eigenmodes as a function of the
Richardson number for W = 0, k∗ = 1.1

and z → zc. These asymptotes correspond to absorption critical layers of internal
waves. Due to viscosity, equation does not degenerate as Rayleigh equation for
u = c. Yet, very high resolution is needed since these layers present a thickness
of (k∗Re)−1/3 (see Drazin and Reid (1984)). Non-converged but physical modes
with positive growth rate have their origin in these critical layers. To validate this
hypothesis, the relation of dispersion ω ∼ k u(zc) have been verified. Frequency of
modes are compared to k u(zc), by obtaining zc from vertical profiles of the mode.
Figure 21 shows that the growth rate of these modes decreases when resolution
grows: they are under-resolved. Figure 20 shows that these modes also decrease
around Ri = 0. This evolution corroborate the relation between modes and internal
waves.

Complex mapping function

The elimination of these spurious modes at the profit of the searched K-H modes
is achieved through the use of a complex mapping in the LiSa code. This stability
code is based on a spectral decomposition using Chebyshev polynomials with a
collocation method using a mapping transforming the spectral variable s ∈ [−1, 1]
(Gauss-Lobatto collocation points) into the physical variable z. A first real mapping
z = ϕ0(s) reads:

ϕ0(z) = C1

[
1− eC2 arctanh(C3s)+C4

]
,

where the constants C1, C2, C3 and C4 are adjusted to match the positions of the
interface and the two boundaries as well as to adjust the refinement of the collocation
grid near the interface. Based on an idea of Fabre et al (2006), we have extended it
to the complex mapping ϕα(z) = ϕ0(s) (1−i α) with α = 0.010369−0.035621Ri. As
presented on Figure 21(b), α can been determined through a sensitivity analysis of
the eigenvalues with respect to its value. We choose the lowest value of α for which
growth rate of spurious eigenvalues pass horizontal neutral axes (corresponding to
their supposed position).
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Figure 21: Growth rate of the two most unstable eigenmode, for W = 3, k∗ = 0.95,
Re = 100, Ri = 0.15. (a) Variation with the resolution. (b) Variation with α.

Figure 22 presents the eigenvalues spectrum for the two mappings. With the real
mapping ϕ0, the KH mode is “hidden” in a continuous spectrum of non-converged
mode corresponding to internal waves trapped in absorption critical layers as pre-
sented earlier. With the complex mapping ϕα, the continuous spectrum is pushed
below while the unstable KH-mode subsists and exhibit a converged Chebyshev de-
composition. The use of the complex mapping is equivalent to a deformation of the
integration path in the complex plane, which avoids the singularities at the z real
points corresponding to the critical layers. The error done with a constant α map-
ping, which does not bring back the integration path towards the real axes, appears
to be negligible for the eigenvalue precision looked at in the present work.
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Figure 22: Eigenvalues spectra forRi = 0.15, W = 3, Re = 102, k∗ = 0.95. Com-
parison of the real and compoex mappings. Eigenvalues with red circles correspond
to converged modes.
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