2,035 research outputs found

    Migration as a risk factor for school dropout amongst children made vulnerable by HIV/AIDS: a prospective study in eastern Zimbabwe.

    Get PDF
    Orphans and other children made vulnerable by HIV in sub-Saharan Africa are at increased risk of moving household and of dropping out of school. However, the relationship between child migration and school enrolment has not been established. Multivariable regression models and prospective data from a cohort of children in Manicaland, Zimbabwe, were used to investigate the effect of migration on school enrolment. Children who had moved household were at increased risk of dropping out of school after adjusting for orphan status, relationship to primary caregiver, and household wealth. Interventions are needed to ensure that children who migrate are re-enrolled in school

    Sources of uncertainty in future projections of the carbon cycle

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The inclusion of carbon cycle processes within CMIP5 Earth System Models provides the opportunity to explore the relative importance of differences in scenario and climate model representation to future land and ocean carbon fluxes. A two-way ANOVA approach was used to quantify the variability owing to differences between scenarios and between climate models at different lead times. For global ocean carbon fluxes, the variance attributed to differences between Representative Concentration Pathway scenarios exceeds the variance attributed to differences between climate models by around 2025, completely dominating by 2100. This contrasts with global land carbon fluxes, where the variance attributed to differences between climate models continues to dominate beyond 2100. This suggests that modelled processes that determine ocean fluxes are currently better constrained than those of land fluxes, thus we can be more confident in linking different future socio-economic pathways to consequences of ocean carbon uptake than for land carbon uptake. The apparent agreement in atmosphere-ocean carbon fluxes, globally, masks strong climate model differences at a regional level. The North Atlantic and Southern Ocean are key regions, where differences in modelled processes represent an important source of variability in projected regional fluxesMOHC authors were supported by the Joint DECC / Defra Met Office Hadley Centre Cli- mate Programme (GA01101). SY was supported by the Hong Kong Polytechnic University grant “Bayesian Modelling for Quantifying Uncertainty in Climate Predictions” (1-ZV9Z). We acknowl- edge use of R software package (R Core Team 2013). We acknowledge the World Climate Re- search Programme’s Working Group on Coupled Modelling, which is responsible for CMIP and we thank the climate modelling groups for providing their GCM output (listed in Table 1). Support of this dataset was provided by the Office of Science, U.S. Department of Energy

    On The Power of Tree Projections: Structural Tractability of Enumerating CSP Solutions

    Full text link
    The problem of deciding whether CSP instances admit solutions has been deeply studied in the literature, and several structural tractability results have been derived so far. However, constraint satisfaction comes in practice as a computation problem where the focus is either on finding one solution, or on enumerating all solutions, possibly projected to some given set of output variables. The paper investigates the structural tractability of the problem of enumerating (possibly projected) solutions, where tractability means here computable with polynomial delay (WPD), since in general exponentially many solutions may be computed. A general framework based on the notion of tree projection of hypergraphs is considered, which generalizes all known decomposition methods. Tractability results have been obtained both for classes of structures where output variables are part of their specification, and for classes of structures where computability WPD must be ensured for any possible set of output variables. These results are shown to be tight, by exhibiting dichotomies for classes of structures having bounded arity and where the tree decomposition method is considered

    Conceptions and expectations of research collaboration in the European social sciences: Research policies, institutional contexts and the autonomy of the scientific field

    Get PDF
    This paper investigates the interactions between policy drivers and academic practice in international research collaboration. It draws on the case of the Open Research Area (ORA), a funding scheme in the social sciences across four national research agencies, seeking to boost collaboration by supporting “integrated” projects. The paper discusses the scheme’s governance and its place within the European policy space before turning to awarded researchers’ perceptions of its originality and impact on their project’s emergence and development. Drawing on Bourdieu’s field theory, we analyse the scheme’s capacity to challenge researchers’ habitual collaborative practice as well as the hierarchical foundations of the social science field. We relate the discourses of researchers, located in France, Germany, the Netherlands and the United Kingdom, to such structural dimensions of the academic profession as, disciplinary cultures, institutional environments and national performance management of research careers. The paper argues that the ORA introduces novel mechanisms of power sharing and answerability in social sciences research capable of unsettling the autonomy of the scientific field. This analysis offers a new perspective on the often unquestioned superiority of the model of international collaboration induced by schemes such as ORA

    Is telomere length socially patterned? Evidence from the West of Scotland Twenty-07 study

    Get PDF
    Lower socioeconomic status (SES) is strongly associated with an increased risk of morbidity and premature mortality, but it is not known if the same is true for telomere length, a marker often used to assess biological ageing. The West of Scotland Twenty-07 Study was used to investigate this and consists of three cohorts aged approximately 35 (N = 775), 55 (N = 866) and 75 years (N = 544) at the time of telomere length measurement. Four sets of measurements of SES were investigated: those collected contemporaneously with telomere length assessment, educational markers, SES in childhood and SES over the preceding twenty years. We found mixed evidence for an association between SES and telomere length. In 35-year-olds, many of the education and childhood SES measures were associated with telomere length, i.e. those in poorer circumstances had shorter telomeres, as was intergenerational social mobility, but not accumulated disadvantage. A crude estimate showed that, at the same chronological age, social renters, for example, were nine years (biologically) older than home owners. No consistent associations were apparent in those aged 55 or 75. There is evidence of an association between SES and telomere length, but only in younger adults and most strongly using education and childhood SES measures. These results may reflect that childhood is a sensitive period for telomere attrition. The cohort differences are possibly the result of survival bias suppressing the SES-telomere association; cohort effects with regard different experiences of SES; or telomere possibly being a less effective marker of biological ageing at older ages

    Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod

    Full text link
    Current optical detection schemes for single molecules require light absorption, either to produce fluorescence or direct absorption signals. This severely limits the range of molecules that can be detected, because most molecules are purely refractive. Metal nanoparticles or dielectric resonators detect non-absorbing molecules by a resonance shift in response to a local perturbation of the refractive index, but neither has reached single-protein sensitivity. The most sensitive plasmon sensors to date detect single molecules only when the plasmon shift is amplified by a highly polarizable label or by a localized precipitation reaction on the particle's surface. Without amplification, the sensitivity only allows for the statistical detection of single molecules. Here we demonstrate plasmonic detection of single molecules in realtime, without the need for labeling or amplification. We monitor the plasmon resonance of a single gold nanorod with a sensitive photothermal assay and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art plasmon sensors. We find that the sensitivity of the sensor is intrinsically limited due to spectral diffusion of the SPR. We believe this is the first optical technique that detects single molecules purely by their refractive index, without any need for photon absorption by the molecule. The small size, bio-compatibility and straightforward surface chemistry of gold nanorods may open the way to the selective and local detection of purely refractive proteins in live cells

    Upper- and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs

    Get PDF
    Mantle plumes are thought to play a key role in transferring heat from the core\u2013mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes on subducting slabs remains poorly understood. Here we show that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3D anisotropic tomography images and 3D petrological-thermo-mechanical models, which self-consistently explain several unique features of the Fiji\u2013Tonga region. We identify four possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab (VSH4VSV) with thermo-mechanical calculations

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe

    Normal X-inactivation mosaicism in corneas of heterozygous FlnaDilp2/+ female mice--a model of human Filamin A (FLNA) diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some abnormalities of mouse corneal epithelial maintenance can be identified by the atypical mosaic patterns they produce in X-chromosome inactivation mosaics and chimeras. Human <it>FLNA</it>/+ females, heterozygous for X-linked, filamin A gene (<it>FLNA</it>) mutations, display a range of disorders and X-inactivation mosaicism is sometimes quantitatively unbalanced. <it>Flna</it><sup><it>Dilp2/+ </it></sup>mice, heterozygous for an X-linked filamin A (<it>Flna</it>) nonsense mutation have variable eye, skeletal and other abnormalities, but X-inactivation mosaicism has not been investigated. The aim of this study was to determine whether X-inactivation mosaicism in the corneal epithelia of <it>Flna</it><sup><it>Dilp2/+ </it></sup>mice was affected in any way that might predict abnormal corneal epithelial maintenance.</p> <p>Results</p> <p>X-chromosome inactivation mosaicism was studied in the corneal epithelium and a control tissue (liver) of <it>Flna</it><sup><it>Dilp2/+ </it></sup>and wild-type (WT) female X-inactivation mosaics, hemizygous for the X-linked, <it>LacZ </it>reporter H253 transgene, using ÎČ-galactosidase histochemical staining. The corneal epithelia of <it>Flna</it><sup><it>Dilp2/+ </it></sup>and WT X-inactivation mosaics showed similar radial, striped patterns, implying epithelial cell movement was not disrupted in <it>Flna</it><sup><it>Dilp2/+ </it></sup>corneas. Corrected stripe numbers declined with age overall (but not significantly for either genotype individually), consistent with previous reports suggesting an age-related reduction in stem cell function. Corrected stripe numbers were not reduced in <it>Flna</it><sup><it>Dilp2/+ </it></sup>compared with WT X-inactivation mosaics and mosaicism was not significantly more unbalanced in the corneal epithelia or livers of <it>Flna</it><sup><it>Dilp2/+ </it></sup>than wild-type <it>Flna<sup>+/+ </sup></it>X-inactivation mosaics.</p> <p>Conclusions</p> <p>Mosaic analysis identified no major effect of the mouse <it>Flna<sup>Dilp2 </sup></it>mutation on corneal epithelial maintenance or the balance of X-inactivation mosaicism in the corneal epithelium or liver.</p
    • 

    corecore