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ABSTRACT

The inclusion of carbon cycle processes within CMIP5 Earth system models provides the opportunity to

explore the relative importance of differences in scenario and climatemodel representation to future land and

ocean carbon fluxes. A two-way analysis of variance (ANOVA) approach was used to quantify the variability

owing to differences between scenarios and between climate models at different lead times. For global ocean

carbon fluxes, the variance attributed to differences between representative concentration pathway scenarios

exceeds the variance attributed to differences between climate models by around 2025, completely domi-

nating by 2100. This contrasts with global land carbon fluxes, where the variance attributed to differences

between climate models continues to dominate beyond 2100. This suggests that modeled processes that

determine ocean fluxes are currently better constrained than those of land fluxes; thus, one can be more

confident in linking different future socioeconomic pathways to consequences of ocean carbon uptake than

for land carbon uptake. The contribution of internal variance is negligible for ocean fluxes and small for land

fluxes, indicating that there is little dependence on the initial conditions. The apparent agreement in

atmosphere–ocean carbon fluxes, globally, masks strong climate model differences at a regional level. The

North Atlantic and Southern Ocean are key regions, where differences in modeled processes represent an

important source of variability in projected regional fluxes.

1. Introduction

The global carbon cycle is a crucial component of

future climate change, closely linking anthropogenic

CO2 emissions with future changes in atmospheric CO2

concentration and hence climate (Denman et al. 2007;

Ciais et al. 2013). Inclusion of the carbon cycle as an

interactive component in comprehensive Earth system

models (ESMs) has grown since early coupled studies

(Cox et al. 2000) and intercomparisons such as the

Coupled Carbon Cycle–Climate Model Intercomparison

Project (C4MIP; Friedlingstein et al. 2006) and is now a

mainstream component of coordinated climate simula-

tions like phase 5 of the CoupledModel Intercomparison

Project (CMIP5; Taylor et al. 2012).

Such coupled climate–carbon cycle ESMs simulate the

natural exchange of carbon by the land and oceanwith the

atmosphere and thus provide a predictive link between

emissions and atmospheric concentrations of CO2. They

can be used to compute the emissions required to follow a

prescribed concentration pathway (Jones et al. 2006;

Plattner et al. 2008). This method has become widespread

and was recommended by Hibbard et al. (2007) as the

experimental design for CMIP5 and has subsequently

been used to present compatible emissions from the

CMIP5 multimodel ensemble (Jones et al. 2013).

The natural uptake of carbon by land and ocean

biospheres is sensitive to both changes in climate and
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the concentration of atmospheric CO2 and the balance

between these large but offsetting effects on decade–

century time scales is not well constrained by obser-

vations. Comparison between the C4MIP ESMs

showed large quantitative uncertainty in the future

projections of carbon uptake (Friedlingstein et al.

2006), similarly seen in perturbed parameter simula-

tions (Booth et al. 2012). This spread of results across

global climate models (GCMs) has not reduced

substantially in CMIP5 (Arora et al. 2013; Jones

et al. 2013).

To improve the understanding of future land–

atmosphere and ocean–atmosphere exchange of car-

bon, it is imperative to attribute the variation in these

fluxes to their component sources. ‘‘GCM variability’’

originates from an incomplete understanding of

physical processes including both climate and ecosys-

tem processes, involved in air–surface carbon ex-

change and from the limitation of GCMs to represent

known behavior. ‘‘Scenario variability’’ arises from

uncertainty in future human activity; socioeconomic

storylines of population and technology growth are

produced by integrated assessment models (IAMs; see

van Vuuren et al. 2011b) to provide plausible scenarios

of future anthropogenic activity such as energy use

(and hence fossil fuel emissions) and land-use change.

The ‘‘internal variability’’ of a given GCM represents

the natural variability of the climate at daily to mul-

tidecadal time scales (Karoly and Wu 2005), owing to

the chaotic and nonlinear nature of the carbon flux

processes; this variability has been long observed even

in a stationary climate (Madden 1976). There also

exists the possibility of ‘‘GCM–scenario interaction’’

if the differences in simulated climate between GCMs

vary between scenarios.

The aim of this study is to quantify the relative im-

portance with time of GCM and scenario variability and

to estimate the future time beyond which scenario vari-

ability dominates GCM variability. The importance of

the GCM–scenario interaction term will be quantified

as a tool to understanding the response of GCMs to dif-

ferent scenarios.

Analysis of variance (ANOVA; Gelman 2005) has

been used in several climate studies for quantifying

sources of variability (von Storch and Zwiers 2001;

Tingley 2012) and more recently has been effectively

used to diagnose variability in multimodel ensembles

(Yip et al. 2011; Sansom et al. 2013; Hingray and Saïd
2014). The opportunistic nature of the analysis of the

CMIP5 carbon fluxes has resulted in a varying number of

runs for each GCM–scenario pair (some of which have

zero runs)—thus an unbalanced factorial design. An

ANOVA method appropriate for this data (Northrop

and Chandler 2014) has been used to partition the dif-

ferent sources of variability.

a. RCP scenarios

A set of four representative concentration pathways

(RCPs) were developed to provide a common set of

future climate scenarios to the scientific community,

which would allow for better comparisons between

ESM/GCM studies and for ease of communication of

GCM results (van Vuuren et al. 2011b). The four RCP

scenarios—RCP8.5 (Riahi et al. 2011), RCP6.0 (Masui

et al. 2011), RCP4.5 (Thomson et al. 2011), and RCP2.6

(van Vuuren et al. 2011a)—lead to an approximate in-

crease in global radiative forcing by the year 2100 of 8.5,

6.0, 4.5, and 2.6Wm22, respectively. The scenarios are

sufficiently separated in terms of the radiative forcing

pathways to provide distinguishable climate results at the

global scale (Moss et al. 2010). The RCP scenarios have a

harmonized historical period, assumptions for carbon

emissions and concentrations, and land-use change.

The dominant driver of future radiative forcing for each

RCP is the CO2 concentration pathway (Fig. 1a) along

with the fossil fuel emissions associated with that pathway

(Fig. 1b) from each IAM that generated the scenario.

According to the concentration-driven experiment design

in CMIP5 (Taylor et al. 2012), each GCM performs sim-

ulations from a preindustrial state (typically representa-

tive of 1850) up to 2100, using these CO2 concentrations

as a boundary condition to force the GCM.

Such results are of relevance to policy decisions that

aim to achieve a given climate target, but they are sub-

ject to large uncertainty (Jones et al. 2013). We want to

understand the causes of this uncertainty in compatible

emissions. The scenarios are designed to be different—

they were selected from hundreds of possible scenarios

and approximately span the 10th to 90th percentiles of

future radiative forcing across published scenarios. They

represent very different societal choices around climate

targets and how to achieve them. Hence, it is desirable

that the consequences of these choices can be distin-

guished in terms of their impacts on global and regional

climate and ecosystems. We might therefore (by the

year 2100) expect the differences between scenarios to

be bigger than the differences between GCMs whose aim

is to represent the same processes (Cox and Stephenson

2007). For example, the variability in global average

temperature by 2100 was greater across scenarios than

between GCMs for the CMIP3 ESMs running the SRES

family of scenarios (Hawkins and Sutton 2009). However,

at regional scales this is not always true (e.g., over the

British Isles by 2100; Hawkins and Sutton 2009). Our

study has explored the variability in carbon cycle behavior

between different GCMs and scenarios, along with their
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interaction, and how this varies by process, by region and

through time.

b. Land-use change in the RCP scenarios

While both ocean and land carbon fluxes respond to

change in climate and CO2, terrestrial carbon storage is

additionally influenced by direct anthropogenic activity to

modify vegetation cover. The RCPs include changes in

anthropogenic land use during the twenty-first century,

and the ESMs attempt to simulate this although with

varying degrees of complexity and completeness of pro-

cess representation (Hurtt et al. 2011; Jones et al. 2013).

Differences in land-use change contribute to the spread of

results across scenarios, and differences in the represen-

tation of land use contribute to the spread betweenESMs.

The degree of land-use change in the scenarios is not

closely related to global radiative forcing, and so the

relative importance of land use in the global carbon

balance changes in time differently between scenarios.

Figure 1c shows the global-scale evolution of land use in

the scenarios in terms of fraction of land given over to

agriculture (crop and pasture). The scenarios differen-

tiate between agricultural land for crops and for pasture,

whereas GCMs differ in how they treat these two classes

of land. A common feature is that conversion of forest

land to agricultural land involves the removal of large

amounts of carbon (as tree biomass). Subsequent

changes of soil carbon and the response of carbon stor-

age to management practices differ between ESMs. This

might be expected to lead to a strong GCM–scenario

interaction and will be explored explicitly in the results

section.

Global time series up to 2100 hide the time evolution

of land use at regional scales, which can differ markedly

between regions. Unlike global climate and CO2, land

use in the RCPs changes most markedly in the early de-

cades of the twenty-first century. We expect the carbon

cycle impact fromCO2 and climate change to continue to

increase undermost scenarios throughout the twenty-first

century and perhaps to be more similar across scenarios

during the early decades. For prescribed land-use change,

however, it is the case that the scenarios diverge rapidly

and differ most in the early decades with reduced land-

use forcing by the end of the century (Fig. 1d).

2. Data

The monthly fields of carbon mass flux out of atmo-

sphere due to net biospheric production on land (output

variable name nbp) and surface downward CO2 flux (out-

put variable name fgco2) from seven GCMs participating

in CMIP5 have been extracted for this work (Taylor 2013;

CCCma 2015; Dunne et al. 2014; Sanderson et al. 2014;

Denvil et al. 2016; JAMSTEC et al. 2015; Giorgetta et al.

2012; Bentsen et al. 2012). These GCMs were selected as

they had good coverage of the four future scenarios and/or

multiple runs for each GCM–scenario pair. Where a par-

ticular GCM has been designed with and without coupled

atmospheric chemistry (e.g., MIROC-ESM and MIROC-

ESM-CHEM), only one version of theGCMwas included;

it was felt that including multiple versions of a particular

GCM could artificially alter the GCM variance. The seven

GCMs included in the analysis are listed in Table 1.

FIG. 1. Shown for each RCP scenario are future (a) atmospheric CO2 concentration pathway, (b) fossil fuel CO2 emissions, (c) crop and

pasture land fraction (i.e., the anthropogenic land-use change), and (d) anthropogenic land-use change CO2 emissions [(a)–(c) courtesy of

Jones et al. (2013)].

TABLE 1. Number of runs of each GCM–scenario pair, made

available for download. (Acronym expansions are available online

at http://www.ametsoc.org/PubsAcronymList.)

GCM

RCP scenario

2.6 4.5 6.0 8.5

CanESM2 5 3 0 4

GFDL-ESM2G 1 1 1 1

HadGEM2-ES 4 4 4 4

IPSL-CM5A-LR 4 2 1 4

MIROC-ESM 1 1 1 1

MPI-ESM-LR 3 3 0 2

NorESM1-ME 1 1 1 1
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In the analysis we have aggregated the monthly

fields into decadal atmosphere–ocean carbon fluxes

(GtC decade21) and decadal atmosphere–land carbon

fluxes (GtCdecade21); the rational for the choice of

time step is given in the discussion (section 5). The first

(e.g., decadal atmosphere–land carbon flux) time step was

obtained by summing all the monthly (e.g., fgco2) fields

over the area of interest for the period 2006–15. The de-

cadal atmosphere–land carbon fluxes can also be thought

of as the decadal change in stored carbon. In the analysis

we have used raw projection carbon flux data as opposed

to change projection data; this is justified in section 5.

The data will be analyzed for the period 2006–95

where all of the simulations listed in Table 1 contain data

(the historical period in the GCMs covers the years

1861–2005, and the future period continues to at least

2100 and beyond for some of the GCMs).

3. Methodology

The unbalanced design of the CMIP5 experiment,

having different numbers of runs for each combination of

GCM i and scenario j, complicates the application of

classical ANOVA techniques (e.g., Yip et al. 2011). Un-

balanced designs can be addressed using multiple re-

gression (Searle 1987; Sansom et al. 2013). However, the

variance attributed to each component depends on the

order that the components are entered in to the regression

(Davison 2003, chapter 8.5). Therefore, we follow

Northrop and Chandler (2014) and use a random effects

ANOVA to accommodate the unbalanced design.

Let Yijk represent a climate variable of interest sim-

ulated in run k of scenario j by GCM i. The CMIP5 data

analyzed here contain results from seven GCMs and

four scenarios. The number of runs k of each scenario by

each GCM varies between 0 and 5 (see Table 1). The

ANOVA model has the following form:

Y
ijk
5m1a

i
1b

j
1 g

ij
1 «

ijk
, (1)

where m is the mean carbon flux over all GCMs and

scenarios. The effect ai represents the expected differ-

ence between the flux simulated byGCM i and themean

m, over all scenarios. Similarly, bj represents the ex-

pected difference between the flux simulated in scenario

j and themeanm, over all GCMs. The term gij represents

any GCM-specific response to a particular scenario; that

is, the response to a particular scenario might vary be-

tween GCMs. The residual «ijk represents variations

between different runs k of the same scenario by the

same GCM (i.e., internal variability).

The GCM differences ai are modeled as independent,

identically distributed normal randomvariables withmean

zero and variances2
G—that is,ai;

iid
N(0, s2

G). The scenario

differences bj, interaction terms gij, and departures owing

to internal variability «ijk are allmodeled similarly—that is,

bj;
iid
N(0, s2

S), gij;
iid
N(0, s2

GS), and «ijk;
iid
N(0, s2

R).

The interpretation of this framework is that the

GCM effects ai, scenario effects bj, interaction effects

gij, and internal variability «ijk are samples from some

larger superpopulations (Stephenson et al. 2012).

Therefore, the variances s2
G, s

2
S, s

2
GS, and s2

R are re-

ferred to as the superpopulation variances. These var-

iances provide the desired partitioning of variability by

quantifying the variability attributed to each compo-

nent (i.e., GCMs, scenarios, internal variability, and

GCM–scenario interaction).

It is also possible to compute variances for the specific

sample of GCMs and scenarios being analyzed—for ex-

ample, s2G 5 (M2 1)21�i(ai 2a)2, where M is the num-

ber of models. These are known as ‘‘finite population’’

variances.

We are primarily interested in the superpopulation

variances since there are many other climate models and

scenarios we could consider if data were available.

However, the finite-population variances provide a useful

alternative view from the current sample.

We follow Northrop and Chandler (2014) and take a

Bayesian approach to estimating the population vari-

ances. In a Bayesian analysis, we are required to

specify our prior beliefs about the quantities of in-

terest. We then update those beliefs after observing

the data (i.e., the CMIP5 runs). A vague normal prior

(normal with large variance) was specified for the

overall mean m of each flux.

Vague inverse-gamma priors are a common choice for

variance parameters in normal models. However, with

only seven GCMs and four scenarios in the ensemble,

there is limited information to quantify the population

variances s2
G, s

2
S, and s2

GS. Specifying a ‘‘vague’’ inverse-

gamma prior for the population variances may lead to

distorted inferences owing to a high concentration of

probability mass near zero, which the small sample size

may be insufficient to override (Gelman 2006).

Half-Cauchy priors were specified for each of the

population standard deviations sG, sS, and sGS. The

half-Cauchy distribution with scale parameter A has

the following form:

p(s)5
2

pA

�
11

s2

A2

�21

, for s. 0. (2)

The half-Cauchy distribution has the advantage of

concentrating less of the prior mass close to zero than the

inverse gamma distribution (Gelman 2006). By control-

ling the scale parameter A, we can spread the prior mass
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of the population standard deviations over a plausible

range, limiting the possibility of either unreasonably

small or large estimates of the population standard de-

viations (Gelman 2006).

The prior scale parameter A was approximated from

the range in decadal fluxes in the year 2100 in Figs. 2a,

3a, 3e, 4a, 4e, 5a, 5e, and 5i. Following Northrop and

Chandler (2014), the scale parameter was set to one-

quarter of the approximated range (since in the

Gaussian approximation 95% of the data should be

within two standard deviations of the mean). Values for

figures are given in Table 2.

The same scale parameter A was used for all three

standard deviations sG, sS, and sGS, but different values

of A were specified for each flux. Once the priors were

specified, the posterior distributions of the population

standard deviations were estimated by Markov chain

Monte Carlo (MCMC) techniques (Gilks et al. 1996;

Gelman and Rubin 1992) using the just another Gibbs

sampler (JAGS) software (Plummer 2015), and the code

provided by Northrop and Chandler (2014).

Estimating the prior scale parameter from the data

is a double use of the data. However, no independent

source was available, and the prior is designed only to

provide a mild constraint on plausible values of the

population standard deviations, so the compromise is

acceptable.

4. Results

We follow the convention for graphically comparing

variance components using stacked fractional variance

plots (Hawkins and Sutton 2009). The fractional vari-

ances are based on the posterior medians of the super-

population variances s2
G, s

2
S, s

2
GS, and s2

R.

a. Variability in CO2 emissions

Four CO2-concentration-driven scenarios (RCP2.6,

RCP4.5, RCP6.0, and RCP8.5) were used, from which

the decadal rate of change DCO2 was determined.

Compatible fossil fuel emissions can be determined as

follows (shown in Fig. 2a):

Emission(t)5DCO
2
(t)1 decadal atmosphere–land carbon fluxes(t)

1 decadal atmosphere–ocean carbon fluxes(t) . (3)

Note that Emission(t) is to the atmosphere. When we

consider variability in CO2 emissions (Fig. 2b), the sce-

nario variance overtakes the GCM variance in the late

2020s and completely dominates by midcentury.

From the terms in Eq. (3), the compatible emissions

are strongly influenced by the change in atmospheric

CO2, which is prescribed as a common forcing to all

GCMs and is larger, by a factor of approximately 2–3,

than the change in land and ocean carbon storage.

Hence, the dominant term in the compatible emissions

does not vary between GCMs. This leads to the striking

result that the variability in emissions between GCMs is

much smaller than the variability between scenarios.

However, there is still substantial GCM spread in the

compatible emissions for each scenario, and it is desir-

able to investigate the components of this.

b. Variability in global CO2 fluxes

Subjectively, it is clear that the multimodel ensem-

ble of global land and ocean carbon fluxes behave

FIG. 2. (a) The decadal CO2 fossil fuel emissions for all GCMs and scenarios; (b) the corresponding standard deviation of sG, sS, sGS,

and sR with median values denoted by the thick lines and hatched interquartile range; (c) the posterior distribution of sG, sS, sGS, and sR

for the decade 2086–95; and (d) the fractional variance (based on the estimated posteriormedians of the superpopulationss2
G,s

2
S, s

2
GS, and

s2
R) for the period 2006–95.
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differently (Fig. 3). For decadal atmosphere–ocean

carbon fluxes, scenario variance s2
S overtakes GCM

variance s2
G around 2025 and by the end of the century is

contributing about 90% of the total variance across

simulated ocean carbon fluxes (Fig. 3d). For decadal

atmosphere–land carbon fluxes, s2
G remains the domi-

nant term throughout the twenty-first century (Fig. 3h).

It is interesting to see that the posterior median of the

scenario standard deviation sS of the land carbon fluxes

does not grow as quickly or as large as for the ocean

(Figs. 3b,f) and in magnitude is about half that of the

ocean by 2095. The reason for this is not explored further

in this paper but may be due to competing effects of CO2

and climate on land carbon (Arora et al. 2013).Unlike for

ocean carbon fluxes, the fractional scenario variance of

land carbon fluxes is nonzero in the near future (Fig. 3h),

owing in part to the rapid divergence of the land-use

scenarios. The GCM–scenario interaction term is an im-

portant source of variability in global land carbon fluxes.

There are several contributing factors to the interaction

term, and these will be investigated in section 4d.

c. Variability in regional ocean CO2 fluxes

Two key ocean regions of CO2 uptake were consid-

ered: the North Atlantic Ocean and the Southern Ocean.

The regional extents of these ocean regions are given in

Table 3. The main uptake of atmospheric CO2 in the

Southern Ocean takes place in the latitudes 608–408S (Le

Quéré et al. 2000, 2007; Takahashi et al. 2002), but there is
much greater variability in the simulated fluxes below

608S (Lenton et al. 2013). The noticeable difference in the
fractional variance plots between Southern Ocean

(Fig. 4d) and global ocean (Fig. 3d) carbon fluxes is that

s2
S rapidly overtakes s2

G in the global case, whereas s2
G

remains a major source of variability at the end of the

century in the Southern Ocean. The Southern Ocean

circulation is known to be poorly simulated (Russell et al.

2006), and the CO2 fluxes in this region are not well

constrained by observations (Monteiro et al. 2009); these

factors help to explain the large contributionmade bys2
G.

The North Atlantic Ocean has been identified as a key

sink of atmospheric CO2 (Schuster and Watson 2007;

Takahashi et al. 2002). The North Atlantic Ocean has

unusually large differences between simulated carbon

fluxes, as can be seen in the bunching by GCM in these

fluxes (Fig. 4e) compared with the bunching by scenario

in the global ocean fluxes (Fig. 3a). This explains why s2
G

remains the major variance term at the end of the

twenty-first century (Fig. 4h). Having outlying GCMs

(Fig. 4e) greatly increases s2
G; IPSL-CM5A-LR is one

outlier here whose anomalous behavior may result from

the parameterization of ice calving, which produces a

flux of freshwater from the polar ice sheets (Marti et al.

2010; Roy et al. 2011).

FIG. 3. As in Fig. 2, but for decadal (a)–(d) ocean and (e)–(h) land carbon fluxes for the period 2006–95. A subset of GCMs is highlighted

for the global atmosphere–land carbon fluxes in (e).
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d. Variability in regional land CO2 fluxes

We performed ANOVA for the three land regions

defined in Table 3. The behavior of the northern tem-

perate and northern high latitudes is similar. In the early

decades, the carbon fluxes bunch together closely by

GCM (represented by the line styles in Figs. 5a,e). Later

in the century, the contribution of the GCM–scenario

interaction s2
GS becomes progressively more important

(Figs. 5b,h). The interaction term s2
GS appears because

the spread of fluxes for GCMs run under RCP2.6 re-

mains small but grows larger with time for the other

scenarios (Figs. 5a,e). A plausible explanation for this

behavior is that RCP2.6 is closest to the current climate,

so the GCM spread is better constrained by present-day

carbon flux observations than the other three scenarios.

The scenario variance s2
S is negligible in the first decade,

suggesting that anthropogenic land-use change is not an

important early source of variability in the northern-

temperate and northern-high-latitude carbon fluxes.

In the tropical land region, different scenarios are al-

ready displaying different CO2 flux behaviors in the first

decade (Fig. 5i) with s2
S being an important source of

variability in the first decade (Fig. 5l), strongly suggest-

ing that anthropogenic land-use change is an important

early source of variance in tropical land region carbon

fluxes. It is interesting to note that the progression of the

RCP scenario radiative forcing from low to high is not

repeated in the degree of carbon uptake in the tropics

(Fig. 5i), with RCP8.5 appearing to have a lower carbon

uptake than RCP4.5 and RCP6.0.

5. Discussion

We made a decision to aggregate the monthly fields

into decadal atmosphere–ocean carbon fluxes and de-

cadal atmosphere–land carbon fluxes (see section 2).We

are not interested in trying to predict carbon fluxes for

individual years; instead, we want to know how long-

term cumulative changes in natural stores of carbon

affect anthropogenic emissions and/or climate. For this

we want to smooth out annual- and subannual-scale

variability, but we still care about how much the

decadal-scale fluxes are dependent on the initial condi-

tions. The ocean uptake looks much the same on annual

(not shown) and decadal time steps. However, the in-

ternal variance of annual land carbon fluxes (not shown)

is very large, in agreement with expectations, owing to

the tropical land response to El Niño–Southern Oscil-

lation (ENSO)-induced climate fluctuations (Jones et al.

2001; Cox et al. 2013). Overall, more robust estimates of

the variance components of land carbon fluxes were

obtained from the decadal time-step.

We have chosen to use raw projection carbon flux data

in the analysis since model differences at 2006 represent

genuine uncertainty. For ocean uptake, observational

FIG. 4. As in Fig. 2, but for decadal (a)–(d) Southern Ocean and (e)–(h) North Atlantic Ocean carbon fluxes for the period 2006–95.
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estimates in the 1990s suggest a mean ocean CO2 sink

of 2.2 6 0.4GtC yr21, which has a very similar un-

certainty to the spread of GCM global ocean carbon

fluxes of 2.0 6 0.4GtC yr21 given by Le Quéré et al.

(2015). There are no observational constraints on land

uptake of carbon in the present; these were instead

estimated from the residual of CO2 emissions, which

are neither absorbed by the ocean nor remain in the

atmosphere (Le Quéré et al. 2015).

Our simple ANOVA model treats each time point

separately, so the results may not be robust in the

presence of large internal variability; that is, the frac-

tional variance plots may be very noisy rather than

varying smoothly. In that case, it might be more ap-

propriate to use a time series ANOVA approach such as

the heuristic polynomial method of Hawkins and Sutton

(2009) or the quasi-ergodic approach of Hingray and

Saïd (2014). In the present work, such a time series ap-

proach would likely have produced robust estimates of

the variance terms if using variables with annual rather

than decadal time steps.

FIG. 5. As in Fig. 2, but for decadal carbon fluxes of (a)–(d) northern high-latitude land, (e)–(h) northern temperate land, and (i)–(l)

tropical land for the period 2006–95. A subset of GCMs is highlighted for the decadal carbon fluxes in (a),(e),(i).

TABLE 2. Values of prior scale parameter A for figures.

Figure A

Fig. 2a 90.0

Fig. 3a 15.0

Fig. 3e 22.5

Fig. 4a 3.5

Fig. 4e 4.0

Fig. 5a 5.0

Fig. 5e 10.0

Fig. 5i 15.0
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In Eq. (1) the GCMs are assumed to be independent.

However, there are likely to be similarities in the way

certain processes are parameterized. In that case,s2
G will

underestimate the variability in future carbon fluxes

owing to differences in the representation of carbon

cycle processes and parameterizations in GCMs. Addi-

tionally, the CMIP5 multimodel ensemble is an ‘‘en-

semble of opportunity’’; that is, it is not designed to span

the range of possible behaviors of the Earth system but

is a collection of best guesses. This will also lead to s2
G

underestimating the variability in future carbon fluxes

owing to GCM differences. For a review of the diffi-

culties associated with interpreting multimodel ensem-

bles, see Stephenson et al. (2012).

In contrast to the GCMs, the RCP scenarios are

designed to span the 10th and 90th percentiles of likely

future radiative forcing. They do not constitute a random

sample from the space of possible future scenarios (i.e.,

they are unlikely to be independent). As a result, the

superpopulation variance s2
S may tend to overestimate

the variability in future carbon fluxes owing to scenario

uncertainty. The results when using finite-population

variance (not shown) are much the same as those ob-

tained through using superpopulation variance. The sS

grows a little slower when using finite-population vari-

ance, and the point when scenario variance overtakes

GCM variance is a few years later. The interquartile

range of sG and sS are much smaller when using finite-

population variance.

6. Conclusions

a. Interpretation of results

An ANOVA method was used to quantitatively par-

tition the compatible fossil fuel emissions and their

component carbon fluxes in terms of their variability

across scenarios and between GCMs. For the compati-

ble emissions, the spread of results is dominated by

spread across scenarios (scenario variability overtakes

GCM variability in the late 2020s), at least partly owing

to the large role of prescribed CO2 concentration in the

compatible emissions. The CO2 pathways in the RCPs

are sufficiently distinct that the scenarios are more dif-

ferent from each other than the differences between

GCMs. However, there is still variability between GCMs

and therefore uncertainty in how to achieve a given

pathway owing to natural land and ocean carbon uptake.

Scenario variability overtakes GCM variability in

global ocean fluxes around 2025, while GCM variability

remains dominant over scenario variability beyond 2100

for global land fluxes. There are large regional variations

in fractional variance (e.g., GCM variability dominating

beyond 2100 in the North Atlantic Ocean).

Although the focus here is on simulated carbon fluxes,

this explicitly includes the GCM representation of cli-

mate processes that will differ regionally and by quantity

(temperature, precipitation, etc.); that is, the simulated

carbon fluxes may differ owing to different simulated

climate as well as owing to differences in carbon cycle

representation. Studies that have run vegetation models

offline forced by prescribed climate inputs have found

substantial differences from both multiple land surface

models driven by the emulated climate of a single

common GCM (Sitch et al. 2008) and emulated climate

changes of multiple GCMs (Huntingford et al. 2013).

Similarly, changes to the land surface within a common

climate model framework have been shown to drive a

broad spread in carbon responses (Booth et al. 2012).

At the moment land carbon flux output from different

GCMs are not sufficient to reliably distinguish the con-

sequences of different CO2 pathways, with the dis-

agreement between GCMs growing increasingly large

from RCP2.6 to RCP8.5. The reasonable agreement in

land carbon fluxes between GCMs in the present day is

likely the result of constraining carbon fluxes to obser-

vations. On the other hand, the global intramodel

agreement suggests that we can be more confident in

linking different future socioeconomic pathways to

consequences of ocean carbon uptake (such as ocean

acidification) than we can for consequences of land

carbon uptake.

To aid decision making, GCM output is of use if it

allows a distinction to be seen between different courses

of action (such as land-use choices or emissions re-

ductions). If GCM variance is greater than scenario

variance it reduces confidence in statements around the

difference between scenarios and reduces the utility of

the GCMs and the simulations. Where the scenarios are

more different than the GCM variance this implies we

have some confidence in the differences in climate out-

comes owing to socioeconomic choices. The smaller we

canmake the GCMvariance, the finer the distinction we

can make between policy options.

b. Ideas for further work

In the RCP scenarios there is a progression of radia-

tive forcing from low to high, but the degree of land-use

TABLE 3. Extent of regions where carbon fluxes were analyzed.

Region Latitude Longitude

Southern Ocean 908–608S All

North Atlantic Ocean 358–808N 808W–108E
Tropical land 308S–308N All

Northern temperate land 308–608N All

Northern high latitudes 608–858N All
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change does not follow this with different rates and even

different signs of changes between scenarios and in par-

ticular regions. Land-use change storylines also diverge

more quickly than CO2 concentration and climate across

the RCPs and are likely therefore to be responsible for

the early twenty-first-century changes. It has not been

possible to sample the range of land-use change scenarios

independently of future CO2 scenarios in this analysis; it

would be of great use if a designed set of GCM runs could

sample this range.
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