127 research outputs found

    Using steered molecular dynamics to predict and assess Hsp70 substrate-binding domain mutants that alter prion propagation.

    Get PDF
    Genetic screens using Saccharomyces cerevisiae have identified an array of cytosolic Hsp70 mutants that are impaired in the ability to propagate the yeast [PSI(+)] prion. The best characterized of these mutants is the Ssa1 L483W mutant (so-called SSA1-21), which is located in the substrate-binding domain of the protein. However, biochemical analysis of some of these Hsp70 mutants has so far failed to provide major insight into the specific functional changes in Hsp70 that cause prion impairment. In order to gain a better understanding of the mechanism of Hsp70 impairment of prions we have taken an in silico approach and focused on the Escherichia coli Hsp70 ortholog DnaK. Using steered molecular dynamics simulations (SMD) we demonstrate that DnaK variant L484W (analogous to SSA1-21) is predicted to bind substrate more avidly than wild-type DnaK due to an increase in numbers of hydrogen bonds and hydrophobic interactions between chaperone and peptide. Additionally the presence of the larger tryptophan side chain is predicted to cause a conformational change in the peptide-binding domain that physically impairs substrate dissociation. The DnaK L484W variant in combination with some SSA1-21 phenotypic second-site suppressor mutations exhibits chaperone-substrate interactions that are similar to wild-type protein and this provides a rationale for the phenotypic suppression that is observed. Our computational analysis fits well with previous yeast genetics studies regarding the functionality of the Ssa1-21 protein and provides further evidence suggesting that manipulation of the Hsp70 ATPase cycle to favor the ADP/substrate-bound form impairs prion propagation. Furthermore, we demonstrate how SMD can be used as a computational tool for predicting Hsp70 peptide-binding domain mutants that impair prion propagation

    Phenotypic and molecular characterization of Staphylococcus aureus isolates expressing low- and high-level mupirocin resistance in Nigeria and South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mupirocin is a topical antimicrobial agent which is used for the treatment of skin and postoperative wound infections, and the prevention of nasal carriage of methicillin-resistant <it>Staphylococcus aureus </it>(MRSA). However, the prevalence of mupirocin resistance in <it>S. aureus</it>, particularly in MRSA, has increased with the extensive and widespread use of this agent in hospital settings. This study characterized low- and high-level mupirocin-resistant <it>S. aureus </it>isolates obtained from Nigeria and South Africa.</p> <p>Methods</p> <p>A total of 17 mupirocin-resistant <it>S. aureus </it>isolates obtained from two previous studies in Nigeria and South Africa, were characterized by antibiogram, PCR-RFLP of the coagulase gene and PFGE. High-level mupirocin resistant isolates were confirmed by PCR detection of the <it>mupA </it>gene. The genetic location of the resistance determinants was established by curing and transfer experiments.</p> <p>Results</p> <p>All the low-level mupirocin resistant isolates were MRSA and resistant to gentamicin, tetracycline and trimethoprim. PFGE identified a major clone in two health care institutions located in Durban and a health care facility in Pietermaritzburg, Greytown and Empangeni. Curing and transfer experiments indicated that high-level mupirocin resistance was located on a 41.1 kb plasmid in the South African strain (A15). Furthermore, the transfer of high-level mupirocin resistance was demonstrated by the conjugative transfer of the 41.1 kb plasmid alone or with the co-transfer of a plasmid encoding resistance to cadmium. The size of the mupirocin-resistance encoding plasmid in the Nigerian strain (35 IBA) was approximately 35 kb.</p> <p>Conclusion</p> <p>The emergence of mupirocin-resistant <it>S. aureus </it>isolates in Nigeria and South Africa should be of great concern to medical personnel in these countries. It is recommended that methicillin-susceptible <it>S. aureus </it>(MSSA) and MRSA should be routinely tested for mupirocin resistance even in facilities where the agent is not administered. Urgent measures, including judicious use of mupirocin, need to be taken to prevent clonal dissemination of the mupirocin/methicillin resistant <it>S. aureus </it>in KZN, South Africa and the transfer of the conjugative plasmid encoding high-level mupirocin resistance identified in this study.</p

    The Mammalian Disaggregase Machinery: Hsp110 Synergizes with Hsp70 and Hsp40 to Catalyze Protein Disaggregation and Reactivation in a Cell-Free System

    Get PDF
    Bacteria, fungi, protozoa, chromista and plants all harbor homologues of Hsp104, a AAA+ ATPase that collaborates with Hsp70 and Hsp40 to promote protein disaggregation and reactivation. Curiously, however, metazoa do not possess an Hsp104 homologue. Thus, whether animal cells renature large protein aggregates has long remained unclear. Here, it is established that mammalian cytosol prepared from different sources possesses a potent, ATP-dependent protein disaggregase and reactivation activity, which can be accelerated and stimulated by Hsp104. This activity did not require the AAA+ ATPase, p97. Rather, mammalian Hsp110 (Apg-2), Hsp70 (Hsc70 or Hsp70) and Hsp40 (Hdj1) were necessary and sufficient to slowly dissolve large disordered aggregates and recover natively folded protein. This slow disaggregase activity was conserved to yeast Hsp110 (Sse1), Hsp70 (Ssa1) and Hsp40 (Sis1 or Ydj1). Hsp110 must engage substrate, engage Hsp70, promote nucleotide exchange on Hsp70, and hydrolyze ATP to promote disaggregation of disordered aggregates. Similarly, Hsp70 must engage substrate and Hsp110, and hydrolyze ATP for protein disaggregation. Hsp40 must harbor a functional J domain to promote protein disaggregation, but the J domain alone is insufficient. Optimal disaggregase activity is achieved when the Hsp40 can stimulate the ATPase activity of Hsp110 and Hsp70. Finally, Hsp110, Hsp70 and Hsp40 fail to rapidly remodel amyloid forms of the yeast prion protein, Sup35, or the Parkinson's disease protein, alpha-synuclein. However, Hsp110, Hsp70 and Hsp40 enhanced the activity of Hsp104 against these amyloid substrates. Taken together, these findings suggest that Hsp110 fulfils a subset of Hsp104 activities in mammals. Moreover, they suggest that Hsp104 can collaborate with the mammalian disaggregase machinery to rapidly remodel amyloid conformers

    Identifying evidence for past mining and metallurgy from a record of metal contamination preserved in an ombrotrophic mire near Leadhills, SW Scotland, UK

    Get PDF
    This study presents a new 3600-year record of past metal contamination from a bog located close to the Leadhills and Wanlockhead orefield of southwest Scotland. A peat core, collected from Toddle Moss, was radiocarbon (14C) dated and analysed for trace metal concentrations (by EMMA) and lead isotopes (by ICP-MS) to reconstruct the atmospheric deposition history of trace metal contamination, in particular, lead. The results show good agreement with documented historical and archaeological records of mining and metallurgy in the region: the peak in metal mining during the 18th century, the decline of lead mining during the Anglo-Scottish war and lead smelting during the early medieval period. There may also have been earlier workings during the Late Bronze and Iron Ages indicated by slight increases in lead concentrations, the Pb/Ti ratio and a shift in 206Pb/207Pb ratios, which compare favourably to the signatures of a galena ore from Leadhills and Wanlockhead. In contrast to other records across Europe, no sizeable lead enrichment was recorded during the Roman Iron Age, suggesting that the orefield was not a significant part of the Roman lead extraction industry in Britain. These findings add to the various strands of archaeological evidence that hint at an early lead extraction and metallurgical industry based in southern Scotland. The results also provide further evidence for specific regional variations in the evolution of mining and metallurgy and an associated contamination signal during prehistoric and Roman times across Europe

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]&lt;2.20(2.56) and Γ[Ξb(6333)0]&lt;1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances
    corecore