3,030 research outputs found

    Biodiversity and climate change: Risks to dwarf succulents in Southern Africa.

    Get PDF
    The aim of this study was to explore the effects of anthropogenic climate change on the dwarf succulent genus Conophytum (Aizoaceae) within areas recognised for their floral biodiversity, namely the Succulent Karoo, Fynbos, Desert and Nama Karoo biomes of South Africa and Namibia. Niche-based modelling was used to identify the key climatic and geological variables influencing the distribution of members of the genus Conophytum. The distribution of the genus is primarily controlled by a small number of environmental variables, notably winter and summer rainfall levels, together with geology. Assuming a zero-dispersal model, the predicted effect of both the A1B and A2 climatic emission scenarios was a severe contraction in the area satisfying the bioclimatic envelope for the genus coupled with significant range dislocation. Reductions of >90% in suitable habitat for 10 of the 16 taxonomic Sections that comprise the genus and represent >80% of taxa under the A2 scenario are predicted. Under A1B the projected effects are ameliorated, but reductions of >50% of habitat can be seen in a majority of Sections. Significant projected reductions in the habitable bioclimatic envelope are very likely to increase risk of extinction of ~80% of taxa even under a partly mitigated emissions scenario

    One-by-one trap activation in silicon nanowire transistors

    Full text link
    Flicker or 1/f noise in metal-oxide-semiconductor field-effect transistors (MOSFETs) has been identified as the main source of noise at low frequency. It often originates from an ensemble of a huge number of charges trapping and detrapping. However, a deviation from the well-known model of 1/f noise is observed for nanoscale MOSFETs and a new model is required. Here, we report the observation of one-by-one trap activation controlled by the gate voltage in a nanowire MOSFET and we propose a new low-frequency-noise theory for nanoscale FETs. We demonstrate that the Coulomb repulsion between electronically charged trap sites avoids the activation of several traps simultaneously. This effect induces a noise reduction by more than one order of magnitude. It decreases when increasing the electron density in the channel due to the electrical screening of traps. These findings are technologically useful for any FETs with a short and narrow channel.Comment: One file with paper and supplementary informatio

    Direct generation of photon triplets using cascaded photon-pair sources

    Full text link
    Non-classical states of light, such as entangled photon pairs and number states, are essential for fundamental tests of quantum mechanics and optical quantum technologies. The most widespread technique for creating these quantum resources is the spontaneous parametric down-conversion (SPDC) of laser light into photon pairs. Conservation of energy and momentum in this process, known as phase-matching, gives rise to strong correlations which are used to produce two-photon entanglement in various degrees of freedom. It has been a longstanding goal of the quantum optics community to realise a source that can produce analogous correlations in photon triplets, but of the many approaches considered, none have been technically feasible. In this paper we report the observation of photon triplets generated by cascaded down-conversion. Here each triplet originates from a single pump photon, and therefore quantum correlations will extend over all three photons in a way not achievable with independently created photon pairs. We expect our photon-triplet source to open up new avenues of quantum optics and become an important tool in quantum technologies. Our source will allow experimental interrogation of novel quantum correlations, the post-selection free generation of tripartite entanglement without post- selection and the generation of heralded entangled-photon pairs suitable for linear optical quantum computing. Two of the triplet photons have a wavelength matched for optimal transmission in optical fibres, ideally suited for three-party quantum communication. Furthermore, our results open interesting regimes of non-linear optics, as we observe spontaneous down-conversion pumped by single photons, an interaction also highly relevant to optical quantum computing.Comment: 7 pages, 3 figures, 1 table; accepted by Natur

    Shape-resonant superconductivity in nanofilms: from weak to strong coupling

    Full text link
    Ultrathin superconductors of different materials are becoming a powerful platform to find mechanisms for enhancement of superconductivity, exploiting shape resonances in different superconducting properties. Here we evaluate the superconducting gap and its spatial profile, the multiple gap components, and the chemical potential, of generic superconducting nanofilms, considering the pairing attraction and its energy scale as tunable parameters, from weak to strong coupling, at fixed electron density. Superconducting properties are evaluated at mean field level as a function of the thickness of the nanofilm, in order to characterize the shape resonances in the superconducting gap. We find that the most pronounced shape resonances are generated for weakly coupled superconductors, while approaching the strong coupling regime the shape resonances are rounded by a mixing of the subbands due to the large energy gaps extending over large energy scales. Finally, we find that the spatial profile, transverse to the nanofilm, of the superconducting gap acquires a flat behavior in the shape resonance region, indicating that a robust and uniform multigap superconducting state can arise at resonance.Comment: 7 pages, 4 figures. Submitted to the Proceedings of the Superstripes 2016 conferenc

    The association of cold weather and all-cause and cause-specific mortality in the island of Ireland between 1984 and 2007

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.This article has been made available through the Brunel Open Access Publishing Fund.Background This study aimed to assess the relationship between cold temperature and daily mortality in the Republic of Ireland (ROI) and Northern Ireland (NI), and to explore any differences in the population responses between the two jurisdictions. Methods A time-stratified case-crossover approach was used to examine this relationship in two adult national populations, between 1984 and 2007. Daily mortality risk was examined in association with exposure to daily maximum temperatures on the same day and up to 6 weeks preceding death, during the winter (December-February) and cold period (October-March), using distributed lag models. Model stratification by age and gender assessed for modification of the cold weather-mortality relationship. Results In the ROI, the impact of cold weather in winter persisted up to 35 days, with a cumulative mortality increase for all-causes of 6.4% (95%CI=4.8%-7.9%) in relation to every 1oC drop in daily maximum temperature, similar increases for cardiovascular disease (CVD) and stroke, and twice as much for respiratory causes. In NI, these associations were less pronounced for CVD causes, and overall extended up to 28 days. Effects of cold weather on mortality increased with age in both jurisdictions, and some suggestive gender differences were observed. Conclusions The study findings indicated strong cold weather-mortality associations in the island of Ireland; these effects were less persistent, and for CVD mortality, smaller in NI than in the ROI. Together with suggestive differences in associations by age and gender between the two Irish jurisdictions, the findings suggest potential contribution of underlying societal differences, and require further exploration. The evidence provided here will hope to contribute to the current efforts to modify fuel policy and reduce winter mortality in Ireland

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe

    Fully gapped topological surface states in Bi2_2Se3_3 films induced by a d-wave high-temperature superconductor

    Full text link
    Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconductivity) provides a platform for exploring novel quantum phenomena and new functionalities, such as 1D chiral or helical gapless Majorana fermions, and Majorana zero modes which may find application in fault-tolerant quantum computation. Inducing superconductivity on topological surface states is a prerequisite for their experimental realization. Here by growing high quality topological insulator Bi2_2Se3_3 films on a d-wave superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using molecular beam epitaxy, we are able to induce high temperature superconductivity on the surface states of Bi2_2Se3_3 films with a large pairing gap up to 15 meV. Interestingly, distinct from the d-wave pairing of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step toward the realization of the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274

    Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats

    Get PDF
    This study reports on a comprehensive comparison of the effects of soy and meat proteins given at the recommended level on physiological markers of metabolic syndrome and the hepatic transcriptome. Male rats were fed semi-synthetic diets for 1 wk that differed only regarding protein source, with casein serving as reference. Body weight gain and adipose tissue mass were significantly reduced by soy but not meat proteins. The insulin resistance index was improved by soy, and to a lesser extent by meat proteins. Liver triacylglycerol contents were reduced by both protein sources, which coincided with increased plasma triacylglycerol concentrations. Both soy and meat proteins changed plasma amino acid patterns. The expression of 1571 and 1369 genes were altered by soy and meat proteins respectively. Functional classification revealed that lipid, energy and amino acid metabolic pathways, as well as insulin signaling pathways were regulated differently by soy and meat proteins. Several transcriptional regulators, including NFE2L2, ATF4, Srebf1 and Rictor were identified as potential key upstream regulators. These results suggest that soy and meat proteins induce distinct physiological and gene expression responses in rats and provide novel evidence and suggestions for the health effects of different protein sources in human diets
    corecore