Non-classical states of light, such as entangled photon pairs and number
states, are essential for fundamental tests of quantum mechanics and optical
quantum technologies. The most widespread technique for creating these quantum
resources is the spontaneous parametric down-conversion (SPDC) of laser light
into photon pairs. Conservation of energy and momentum in this process, known
as phase-matching, gives rise to strong correlations which are used to produce
two-photon entanglement in various degrees of freedom. It has been a
longstanding goal of the quantum optics community to realise a source that can
produce analogous correlations in photon triplets, but of the many approaches
considered, none have been technically feasible. In this paper we report the
observation of photon triplets generated by cascaded down-conversion. Here each
triplet originates from a single pump photon, and therefore quantum
correlations will extend over all three photons in a way not achievable with
independently created photon pairs. We expect our photon-triplet source to open
up new avenues of quantum optics and become an important tool in quantum
technologies. Our source will allow experimental interrogation of novel quantum
correlations, the post-selection free generation of tripartite entanglement
without post- selection and the generation of heralded entangled-photon pairs
suitable for linear optical quantum computing. Two of the triplet photons have
a wavelength matched for optimal transmission in optical fibres, ideally suited
for three-party quantum communication. Furthermore, our results open
interesting regimes of non-linear optics, as we observe spontaneous
down-conversion pumped by single photons, an interaction also highly relevant
to optical quantum computing.Comment: 7 pages, 3 figures, 1 table; accepted by Natur