239 research outputs found

    The interplay of chemical structure, physical properties, and structural design as a tool to modulate the properties of melanins within mesopores

    Get PDF
    The design of modern devices that can fulfil the requirements for sustainability and renewable energy applications calls for both new materials and a better understanding of the mixing of existing materials. Among those, surely organic–inorganic hybrids are gaining increasing attention due to the wide possibility to tailor their properties by accurate structural design and materials choice. In this work, we’ll describe the tight interplay between porous Si and two melanic polymers permeating the pores. Melanins are a class of biopolymers, known to cause pigmentation in many living species, that shows very interesting potential applications in a wide variety of fields. Given the complexity of the polymerization process beyond the formation and structure, the full understanding of the melanins’ properties remains a challenging task. In this study, the use of a melanin/porous Si hybrid as a tool to characterize the polymer’s properties within mesopores gives new insights into the conduction mechanisms of melanins. We demonstrate the dramatic effect induced on these mechanisms in a confined environment by the presence of a thick interface. In previous studies, we already showed that the interactions at the interface between porous Si and eumelanin play a key role in determining the final properties of composite materials. Here, thanks to a careful monitoring of the photoconductivity properties of porous Si filled with melanins obtained by ammonia-induced solid-state polymerization (AISSP) of 5,6-dihydroxyindole (DHI) or 1,8-dihydroxynaphthalene (DHN), we investigate the effect of wet, dry, and vacuum cycles of storage from the freshly prepared samples to months-old samples. A computational study on the mobility of water molecules within a melanin polymer is also presented to complete the understanding of the experimental data. Our results demonstrate that: (a) the hydration-dependent behavior of melanins is recovered in large pores (≈ 60 nm diameter) while is almost absent in thinner pores (≈ 20 nm diameter); (b) DHN-melanin materials can generate higher photocurrents and proved to be stable for several weeks and more sensitive to the wet/dry variations

    THz spectroscopy on graphene-like materials for bio-compatible devices

    Get PDF
    Graphene-like (GL) layers and eumelanin-based graphene-like (EUGL) hybrids have been investigated through THz time domain spectroscopy. The interest in these materials lies on their peculiar chemical-physical properties: the former are conductive water stable materials, whereas the latter are biocompatible materials with good conductive and adhesive properties. Both exhibit promising optoelectronic and bioelectronic applications. We measured mixtures of GL layers or EUGL hybrids with KBr, shaped in pellets with uniform thickness, in order to circumvent problems related to sample inhomogeneity and roughness. A mean field theory was applied to extract direct information on permittivity and conductivity. Data have been carefully fitted through the Drude-Smith theory, confirming the conductive nature of the hybrid materials. The results show that EUGL hybrid-based devices can be promising for the next generation of printable bio-circuits

    An electrochemical study of natural and chemically controlled eumelanin

    Get PDF
    Eumelanin is the most common form of the pigment melanin in the human body, with functions including antioxidant behavior, metal chelation, and free radical scavenging. This biopigment is of interest for biologically derived batteries and supercapacitors. In this work, we characterized the voltammetric properties of chemically controlled eumelanins produced from 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) building blocks, namely, DHI-melanin, DHICA-melanin, and natural eumelanin, extracted from the ink sac of cuttlefish, Sepia melanin. Eumelanin electrodes were studied for their cyclic voltammetric properties in acidic buffers including Na+, K+, NH4+, and Cu2+ ions

    Anomalous evolution of broadband optical absorption reveals dynamic solid state reorganization during eumelanin build-up in thin films

    Get PDF
    The origin of eumelanin optical properties remains a formidable conundrum preventing a detailed understanding of the complex photo-protective role of these widespread natural pigments and the rational design of innovative bioinspired materials for optoelectronic applications. Here we report the unusual kinetic and thickness-dependent evolution of the optical properties of black eumelanin polymers generated by spontaneous aerial polymerization of 5,6-dihydroxyindole (DHI) thin films (0.1-1 Όm), consistent with peculiar solid state reorganization mechanisms governing broadband absorption. The complete reversal of eumelanin UV-visible transmittance spectrum curvature on passing from 0.2 to 0.5 Όm thick films, the marked increase in visible extinction coefficients with increasing film thickness and the higher UV extinction coefficients in slowly vs. rapidly generated polymers concur to support distinct dynamic regimes of solid-state molecular reorganization at the nanoscale level and to do affect the development of broadband visible absorption. Solid state control of molecular reorganization disclosed herein may delineate new rational strategies for tuning optical properties in eumelanin thin films for optoelectronic applications

    Aqueous photo(electro)catalysis with eumelanin thin films

    Get PDF
    We report that eumelanin, the ubiquitous natural pigment found in most living organisms, is a photocatalytic material. Though the photoconductivity of eumelanin and its photochemical reactions with oxygen have been known for some time, eumelanins have not been regarded as photofaradaic materials. We find that eumelanin shows photocathodic behavior for both the oxygen reduction reaction and the hydrogen evolution reaction. Eumelanin films irradiated in aqueous solutions at pH 2 or 7 with simulated solar light photochemically reduce oxygen to hydrogen peroxide with accompanying oxidation of sacrificial oxalate, formate, or phenol. Autooxidation of the eumelanin competes with the oxidation of donors. Deposition of thin films on electrodes yields photoelectrodes with higher photocatalytic stability compared with the case of pure photocatalysis, implicating the successful extraction of positive charges from the eumelanin layer. These results open up new potential applications for eumelanin as a photocatalytically-active biomaterial, and inform the growing fundamental body of knowledge about the physical chemistry of eumelanins

    Promelanogenic Effects by an Annurca Apple-Based Natural Formulation in Human Primary Melanocytes

    Get PDF
    Introduction Melanocytes are engaged in synthesis, transport, and release of pigments at the epidermal-melanin units in response to the finely regulated melanogenic pathway. A multifaceted combination of both intrinsic and extrinsic factors – from endocrine and paracrine dynamics to exogenous stimuli such as sunlight and xenobiotics – modulates expression and activity of proteins involved in pigmentation, including the rate-limiting enzyme tyrosinase. As well as playing critical physiological functions comprising skin photoprotection, melanins define hair and skin pigmentation which in turn have impacted considerably to human social communication since time immemorial. Additionally, numerous skin diseases based on pigmentation alterations can have serious public influence. While several melanogenesis inhibitors are already available, the number of melanin activators and tyrosinase stimulators as drug-like agents is still limited. Methods To explore the biological effects of an Annurca Apple-based nutraceutical preparation (AMS) on melanin production, experiments in cellular models of human skin were performed. Both primary cultures and co-cultures of epidermal melanocytes (HEMa) and follicular keratinocytes (HHFK) were used. Results We show that AMS, by now branded for its cutaneous beneficial effects, induces in total biocompatibility a significant promelanogenic effect in human primary melanocytes. In line, we found melanin cytosolic accumulation consistent with tyrosinase up-regulation. Conclusion Disposal of skin pigmenting agents would be attractive for the treatment of hypopigmentation disorders, to postpone skin photoaging or simply for fashion, so that discovery and development of melanogenesis stimulators, especially from natural sources, is nowadays a dynamic area of research

    An electrochemical study of natural and chemically controlled eumelanin

    Get PDF
    ABSTRACT: Eumelanin is the most common form of the pigment melanin in the human body, with functions including antioxidant behavior, metal chelation, and free radical scavenging. This biopigment is of interest for biologically derived batteries and supercapacitors. In this work, we characterized the voltammetric properties of chemically controlled eumelanins produced from 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) building blocks, namely, DHI-melanin, DHICA-melanin, and natural eumelanin, extracted from the ink sac of cuttlefish, Sepia melanin. Eumelanin electrodes were studied for their cyclic voltammetric properties in acidic buffers including Naâș, Kâș, NH₄âș, and CuÂČâș ions. (C) 2017 Author(s)

    Evidence of Unprecedented High Electronic Conductivity in Mammalian Pigment Based Eumelanin Thin Films After Thermal Annealing in Vacuum

    Get PDF
    Melanin denotes a variety of mammalian pigments, including the dark electrically conductive eumelanin and the reddish, sulfur-containing, pheomelanin. Organic (bio)electronics is showing increasing interests in eumelanin exploitation, e.g., for bio-interfaces, but the low conductivity of the material is limiting the development of eumelanin-based devices. Here, for the first time, we report an abrupt increase of the eumelanin electrical conductivity, revealing the highest value presented to date of 318 S/cm. This result, obtained via simple thermal annealing in vacuum of the material, designed on the base of the knowledge of the eumelanin chemical properties, also discloses the actual electronic nature of this material's conduction
    • 

    corecore