91 research outputs found

    Contextual effects of immigrant presence on populist radical right support: testing the ‘halo effect’ on Front National voting in France

    Get PDF
    This paper examines the relationship between immigration and populist radical right (PRR) support, based on an analysis of the contextual effects of immigrant presence on Front National vote in France in 2017. Using a unique set of survey data geolocalising respondents at the subcommunal level, it finds evidence for the existence of a curvilinear “halo effect,” with substantial increases in the probability of PRR vote in areas surrounding communities with significantly higher-than-average immigrant populations, and independent of other socio-economic context, as well as individual socio-demographic characteristics. Most importantly, a path analysis confirms the presence of individual attitudinal mediators of this halo effect on PRR vote, thus testing the foundation of the halo, namely that the contextual effects of immigrant presence act on attitudes which drive PRR support. These findings provide a significant step forward in understanding the mechanisms linking subjective experience of immigration with voting for the populist radical right

    The Unique Lipidomic Signatures of Saccharina latissima Can Be Used to Pinpoint Their Geographic Origin

    Get PDF
    The aquaculture of macroalgae for human consumption and other high-end applications is experiencing unprecedented development in European countries, with the brown algae Saccharina latissima being the flag species. However, environmental conditions in open sea culture sites are often unique, which may impact the biochemical composition of cultured macroalgae. The present study compared the elemental compositions (CHNS), fatty acid profiles, and lipidomes of S. latissima originating from three distinct locations (France, Norway, and the United Kingdom). Significant differences were found in the elemental composition, with Norwegian samples displaying twice the lipid content of the others, and significantly less protein (2.6%, while French and UK samples contained 6.3% and 9.1%, respectively). The fatty acid profiles also differed considerably, with UK samples displaying a lower content of n-3 fatty acids (21.6%), resulting in a higher n-6/n-3 ratio. Regarding the lipidomic profile, samples from France were enriched in lyso lipids, while those from Norway displayed a particular signature of phosphatidylglycerol, phosphatidylinositol, and phosphatidylcholine. Samples from the UK featured higher levels of phosphatidylethanolamine and, in general, a lower content of galactolipids. These differences highlight the influence of site-specific environmental conditions in the shaping of macroalgae biochemical phenotypes and nutritional value. It is also important to highlight that differences recorded in the lipidome of S. latissima make it possible to pinpoint specific lipid species that are likely to represent origin biomarkers. This finding is relevant for future applications in the field of geographic origin traceability and food controlpublishedVersio

    Acclimation of Microalgae to Wastewater Environments Involves Increased Oxidative Stress Tolerance Activity

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Plant and Cell Physiology following peer review. The version of record Osundeko, O., Dean, A. P., Davies, H. & Pittman, J. K. (2014). Acclimation of microalgae to wastewater environments involves increased oxidative stress tolerance activity. Plant and Cell Physiology, 55(10), 1848–1857, is available online at: https://doi.org/10.1093/pcp/pcu113A wastewater environment can be particularly toxic to eukaryotic microalgae. Microalgae can adapt to these conditions but the specific mechanisms that allow strains to tolerate wastewater environments are unclear. Furthermore, it is unknown whether the ability to acclimate microalgae to tolerate wastewater is an innate or species-specific characteristic. Six different species of microalgae (Chlamydomonas debaryana, Chlorella luteoviridis, Chlorella vulgaris, Desmodesmus intermedius, Hindakia tetrachotoma, Parachlorella kessleri) that had never previously been exposed to wastewater conditions were acclimated over an eight week period in secondary-treated municipal wastewater. With the exception of C. debaryana, acclimation to wastewater resulted in significantly higher growth rate and biomass productivity. With the exception of C. vulgaris, total chlorophyll content was significantly increased in all acclimated strains, while all acclimated strains showed significantly increased photosynthetic activity. The ability of strains to acclimate was species-specific, with two species, C. luteoviridis and P. kessleri, able to acclimate more efficiently to the stress than C. debaryana and D. intermedius. Metabolic fingerprinting of the acclimated and non-acclimated microalgae using Fourier transform infrared spectroscopy was able to differentiate strains on the basis of metabolic responses to the stress. In particular, strains exhibiting greater stress response and altered accumulation of lipids and carbohydrates could be distinguished. The acclimation to wastewater tolerance was correlated with higher accumulation of carotenoid pigments and increased ascorbate peroxidase activity

    The Europeans, the Crisis and the World

    No full text

    The French Elections Decoded

    No full text

    Militer a l'extreme droite

    No full text

    France

    No full text
    corecore