6 research outputs found

    210Pb-derived history of PAHs and PCBs accumulationin sediments of a tropical inner Lagoon (Las Matas,Gulf of Mexico) near a major oil refinery

    Get PDF
    Concentrations of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were measured in a sediment core from the tropical freshwater inner lagoon of Las Matas, near the petroleum industrial area of MinatitlaÂŽn-Coatzacoalcos, in the Gulf of Mexico. A 210Pb-derived chronology was used to reconstruct the historical PAH and PCB accumulation in the site during one century (1906–2005). Both geochemical and sedimentological data indicated that a major change occurred in 1947 ± 4, including a shift to coarser sediments and a significant decrease of Al, Li, Fe, organic C and total N contents. This was likely due to the changes in hydrology caused by the confinement of Las Matas Lagoon due to the construction of the Trans-Isthmus road in 1946. PAHs in these samples show relatively low concentrations (259–1176 ng g1), and the congener relative abundances indicate the influence of pyrogenic (petroleum combustion) sources. Total PCB concentrations in the sediments ranged from 24 to 77 ng g1, and are composed by low chlorinated PCBs, with 3- and 4-CB as the prevalent species (51–65% and 29–40%, respectively). PAHs and PCBs were detected at depths corresponding to the early 1900s, when MinatitlaÂŽn refinery started operations, although their time evolution appears to be influenced by different accumulation processes. The PCB background is most likely produced by the combustion of natural organic matter, and an industrial contribution can be recognized when normalizing with OC contents. We concluded that atmospheric deposition is the most significant source of PAHs and PCBs for this water body. This study also provided evidence of the alteration of the wetlands surrounding this industrial area due to urbanization; the fragmentation and alteration of Las Matas Lagoon hydrology contributes to the gradual loss of the wetlands in the zone

    The DUNE far detector vertical drift technology. Technical design report

    Get PDF
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Historical PCB fluxes in the Mexico City Metropolitan Zone as evidenced by a sedimentary record from the Espejo de los Lirios lake

    No full text
    The accumulation of PCBs over time was studied in a sediment core collected from Espejo de los Lirios, an ecological reserve located within the heart of Cuatitlan Izcalli, in the Northern part of Mexico City Metropolitan Zone. A 210Pb-derived chronology, was used to reconstruct the historical PCB fluxes to the site during 84 yr (1911–95). The highest input fluxes occurred in the 1977, after a significant increase after the late 1940s. This trend is clearly the consequence of the increasing emissions that are related to the onset of industrial activities starting from early 1970s. A phase of decrease, after the ban of the use in open systems, ended in 1989 and in 1995, at the time of sampling, the trend was toward a new increase to the highest levels. A reconstruction of PCB atmospheric concentration from sedimentary fluxes is attempted; and the estimate suggests that PCBs concentrations in the air of the Cuautitlán Izcalli seem not of concern. Nonetheless, the contamination levels found in the sediments are relatively high, reaching values above the threshold effect level (TEL) guidelines and, in two cases, close to the probable effect level (PEL) which mean that some adverse effects on the fauna may have occurred all over the time interval represented by the core

    Healthcare access and quality index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990-2015: A novel analysis from the global burden of disease study 2015

    No full text
    Background National levels of personal health-care access and quality can be approximated by measuring mortality rates from causes that should not be fatal in the presence of effective medical care (ie, amenable mortality). Previous analyses of mortality amenable to health care only focused on high-income countries and faced several methodological challenges. In the present analysis, we use the highly standardised cause of death and risk factor estimates generated through the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) to improve and expand the quantification of personal health-care access and quality for 195 countries and territories from 1990 to 2015. Methods We mapped the most widely used list of causes amenable to personal health care developed by Nolte and McKee to 32 GBD causes. We accounted for variations in cause of death certification and misclassifications through the extensive data standardisation processes and redistribution algorithms developed for GBD. To isolate the effects of personal health-care access and quality, we risk-standardised cause-specific mortality rates for each geography-year by removing the joint effects of local environmental and behavioural risks, and adding back the global levels of risk exposure as estimated for GBD 2015. We employed principal component analysis to create a single, interpretable summary measure-the Healthcare Quality and Access (HAQ) Index-on a scale of 0 to 100. The HAQ Index showed strong convergence validity as compared with other health-system indicators, including health expenditure per capita (r=0·88), an index of 11 universal health coverage interventions (r=0·83), and human resources for health per 1000 (r=0·77). We used free disposal hull analysis with bootstrapping to produce a frontier based on the relationship between the HAQ Index and the Socio-demographic Index (SDI), a measure of overall development consisting of income per capita, average years of education, and total fertility rates. This frontier allowed us to better quantify the maximum levels of personal health-care access and quality achieved across the development spectrum, and pinpoint geographies where gaps between observed and potential levels have narrowed or widened over time. Findings Between 1990 and 2015, nearly all countries and territories saw their HAQ Index values improve; nonetheless, the difference between the highest and lowest observed HAQ Index was larger in 2015 than in 1990, ranging from 28·6 to 94·6. Of 195 geographies, 167 had statistically significant increases in HAQ Index levels since 1990, with South Korea, Turkey, Peru, China, and the Maldives recording among the largest gains by 2015. Performance on the HAQ Index and individual causes showed distinct patterns by region and level of development, yet substantial heterogeneities emerged for several causes, including cancers in highest-SDI countries; chronic kidney disease, diabetes, diarrhoeal diseases, and lower respiratory infections among middle-SDI countries; and measles and tetanus among lowest-SDI countries. While the global HAQ Index average rose from 40·7 (95% uncertainty interval, 39·0-42·8) in 1990 to 53·7 (52·2-55·4) in 2015, far less progress occurred in narrowing the gap between observed HAQ Index values and maximum levels achieved; at the global level, the difference between the observed and frontier HAQ Index only decreased from 21·2 in 1990 to 20·1 in 2015. If every country and territory had achieved the highest observed HAQ Index by their corresponding level of SDI, the global average would have been 73·8 in 2015. Several countries, particularly in eastern and western sub-Saharan Africa, reached HAQ Index values similar to or beyond their development levels, whereas others, namely in southern sub-Saharan Africa, the Middle East, and south Asia, lagged behind what geographies of similar development attained between 1990 and 2015. Interpretation This novel extension of the GBD Study shows the untapped potential for personal health-care access and quality improvement across the development spectrum. Amid substantive advances in personal health care at the national level, heterogeneous patterns for individual causes in given countries or territories suggest that few places have consistently achieved optimal health-care access and quality across health-system functions and therapeutic areas. This is especially evident in middle-SDI countries, many of which have recently undergone or are currently experiencing epidemiological transitions. The HAQ Index, if paired with other measures of health-system characteristics such as intervention coverage, could provide a robust avenue for tracking progress on universal health coverage and identifying local priorities for strengthening personal health-care quality and access throughout the world. Copyright © The Author(s). Published by Elsevier Ltd

    Mortality from esophagectomy for esophageal cancer across low, middle, and high-income countries: An international cohort study.

    No full text
    BACKGROUND No evidence currently exists characterising global outcomes following major cancer surgery, including esophageal cancer. Therefore, this study aimed to characterise impact of high income countries (HIC) versus low and middle income countries (LMIC) on the outcomes following esophagectomy for esophageal cancer. METHOD This international multi-center prospective study across 137 hospitals in 41 countries included patients who underwent an esophagectomy for esophageal cancer, with 90-day follow-up. The main explanatory variable was country income, defined according to the World Bank Data classification. The primary outcome was 90-day postoperative mortality, and secondary outcomes were composite leaks (anastomotic leak or conduit necrosis) and major complications (Clavien-Dindo Grade III - V). Multivariable generalized estimating equation models were used to produce adjusted odds ratios (ORs) and 95% confidence intervals (CI). RESULTS Between April 2018 to December 2018, 2247 patients were included. Patients from HIC were more significantly older, with higher ASA grade, and more advanced tumors. Patients from LMIC had almost three-fold increase in 90-day mortality, compared to HIC (9.4% vs 3.7%, p < 0.001). On adjusted analysis, LMIC were independently associated with higher 90-day mortality (OR: 2.31, CI: 1.17-4.55, p = 0.015). However, LMIC were not independently associated with higher rates of anastomotic leaks (OR: 1.06, CI: 0.57-1.99, p = 0.9) or major complications (OR: 0.85, CI: 0.54-1.32, p = 0.5), compared to HIC. CONCLUSION Resections in LMIC were independently associated with higher 90-day postoperative mortality, likely reflecting a failure to rescue of these patients following esophagectomy, despite similar composite anastomotic leaks and major complication rates to HIC. These findings warrant further research, to identify potential issues and solutions to improve global outcomes following esophagectomy for cancer

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore