10 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Diagnóstico virológico e sorológico de raiva em morcegos de uma área urbana na Amazônia Brasileira

    Get PDF
    The outbreaks of rabies in humans transmitted by Desmodus rotundus in 2004 and 2005, in the northeast of the Brazilian State of Para, eastern Amazon basin, made this a priority area for studies on this zoonosis. Given this, the present study provides data on this phenomenon in an urban context, in order to assess the possible circulation of the classic rabies virus (RABV) among bat species in Capanema, a town in the Amazon basin. Bats were collected, in 2011, with mist nets during the wet and dry seasons. Samples of brain tissue and blood were collected for virological and serological survey, respectively. None of the 153 brain tissue samples analyzed tested positive for RABV infection, but 50.34% (95% CI: 45.67-55.01%) of the serum samples analyzed were seropositive. Artibeus planirostris was the most common species, with a high percentage of seropositive individuals (52.46%, 95% CI: 52.31 52.60%). Statistically, equal proportions of seropositive results were obtained in the rainy and dry seasons (c2 = 0.057, d.f. = 1, p = 0.88). Significantly higher proportions of males (55.96%, 95% CI: 48.96-62.96%) and adults (52.37%, 95% CI: 47.35-57.39%) were seropositive. While none of the brain tissue samples tested positive for infection, the high proportion of seropositive specimens indicates that RABV may be widespread in this urban area.Os surtos de raiva em humanos transmitida por Desmodus rotundus em 2004 e 2005 no nordeste do estado do Pará, Brasil, Amazônia Oriental, fizeram desta uma área prioritária para estudos sobre essa zoonose. Diante disso, o presente estudo fornece dados sobre esse fenômeno em contexto urbano, afim de avaliar uma possível circulação do vírus clássico da raiva (RABV) entre espécies de morcegos em Capanema, cidade localizada na bacia Amazônica. Os morcegos foram coletados em 2011, com auxílio de redes de espera durante as estações seca e chuvosa. Amostras de encéfalo e de sangue foram coletadas para o diagnóstico virológico e sorológico, respectivamente. Das 153 amostras de encéfalo analisadas, nenhuma encontrou-se positiva para infecção pelo RABV, porém, 50,34% (95% CI: 45,67-55,01) das amostras de soro analisadas estavam soropositivas. Artibeus planirostris foi a espécie mais comum, e seu percentual de indivíduos soropositivos foi bem elevado (52.46%, 95% CI: 52,31-52,60). Porções estatisticamente iguais de soropositivos foram registrados nas estações (c2 = 0,057, d.f. = 1, p = 0,88). Uma porção significativamente elevada de machos (55,96%, 95% CI: 48,96%-62,96%), e adultos (52,37%, 95% CI: 47,35%-57,39%) foram soropositivos. Apesar de nenhuma das amostras de encéfalo terem sido positivas para raiva, a alta proporção de espécimes soropositivos indica uma possível circulação do RABV nessa área urbana.COSTA, L. J. C. Dra. Docente da Universidade Federal do Pará, Campus BragançaFERNANDES, M. E. B. r. Dr. Docente da Universidade Federal do Pará, Instituto de Estudos Costeiros, Campus Universitário de Braganç

    Show Opinião: quando a MPB entra em cena (1964-1965)

    No full text

    WAO International Scientific Conference (WISC 2016) Abstracts

    No full text
    corecore