12 research outputs found

    Use cases, best practice and reporting standards for metabolomics in regulatory toxicology

    Get PDF
    Metabolomics is a widely used technology in academic research, yet its application to regulatory science has been limited. The most commonly cited barrier to its translation is lack of performance and reporting standards. The MEtabolomics standaRds Initiative in Toxicology (MERIT) project brings together international experts from multiple sectors to address this need. Here, we identify the most relevant applications for metabolomics in regulatory toxicology and develop best practice guidelines, performance and reporting standards for acquiring and analysing untargeted metabolomics and targeted metabolite data. We recommend that these guidelines are evaluated and implemented for several regulatory use cases

    The endpoints project: Novel testing strategies for endocrine disruptors linked to developmental neurotoxicity

    Get PDF
    Copyright © 2020 by the authors. Ubiquitous exposure to endocrine-disrupting chemicals (EDCs) has caused serious concerns about the ability of these chemicals to affect neurodevelopment, among others. Since endocrine disruption (ED)-induced developmental neurotoxicity (DNT) is hardly covered by the chemical testing tools that are currently in regulatory use, the Horizon 2020 research and innovation action ENDpoiNTs has been launched to fill the scientific and methodological gaps related to the assessment of this type of chemical toxicity. The ENDpoiNTs project will generate new knowledge about ED-induced DNT and aims to develop and improve in vitro, in vivo, and in silico models pertaining to ED-linked DNT outcomes for chemical testing. This will be achieved by establishing correlative and causal links between known and novel neurodevelopmental endpoints and endocrine pathways through integration of molecular, cellular, and organismal data from in vitro and in vivo models. Based on this knowledge, the project aims to provide adverse outcome pathways (AOPs) for ED-induced DNT and to develop and integrate new testing tools with high relevance for human health into European and international regulatory frameworks.European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement number: 825759 (The ENDpoiNTs project)

    High body burdens of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in California women.

    Get PDF
    Following our first report on elevated polybrominated diphenyl ether (PBDE) concentrations in California women, we expanded our investigation to include diverse groups of local women. We analyzed additional adipose and serum samples collected in the late 1990s from San Francisco Bay Area women participating in a breast cancer study and in a reproductive study, respectively. Adipose samples (n = 32) were analyzed by low-resolution mass spectrometry in negative-ion chemical ionization mode, whereas serum samples (n = 50) were analyzed by dual-column gas chromatography with electron capture detection. The results confirmed our earlier findings. Concentrations of 2,2,4,4 -tetrabromodiphenyl ether (BDE-47) in contemporary California women ranged between 5 and 510 ng/g lipid, with a median (16.5 ng/g lipid) 3-10 times higher than those reported from Europe. In contrast, PBDEs were not measurable in any of 420 archived serum samples collected in the 1960s from San Francisco Bay Area women participating in a study of child development. BDE-47 concentrations did not increase with age or with concentrations of a polychlorinated biphenyl (PCB-153), suggesting other routes of exposure in addition to diet. Rising body burdens of endocrine-disrupting chemicals such as PBDEs may pose a potential public health threat

    Use cases, best practice and reporting standards for metabolomics in regulatory toxicology

    No full text
    Metabolomics is a widely used technology in academic research, yet its application to regulatory science has been limited. The most commonly cited barrier to its translation is lack of performance and reporting standards. The Metabolomics standaRds Initiative in Toxicology (MERIT) project brings together international experts from multiple sectors to address this need. Here, we identify the most relevant applications for metabolomics in regulatory toxicology and develop best practice guidelines, performance and reporting standards for acquiring and analysing untargeted metabolomics and targeted metabolite data. We recommend that these guidelines are evaluated and implemented for several regulatory use cases

    A 28-day oral dose toxicity study in Wistar rats enhanced to detect endocrine effects of decabromodiphenyl ether (decaBDE)

    No full text
    Decabromodiphenyl ether (decaBDE) is a widely used brominated flame retardant, considered to be of low toxicity. However, previous toxicity studies applied exposure methods with low bioavailability of this compound, and the actual hazard of decaBDE for humans, which are environmentally exposed to decaBDE, may thus be underestimated in current risk assessments. The present 28 days oral toxicity study in Wistar rats was designed to facilitate detection of endocrine and immune modulating effects of decaBDE using an exposure protocol with improved bioavailability. A technical preparation of high purity decaBDE was thus tested by daily exposure through gavage with an emulsion of soy phospholipon/lutrol as a carrier. Most sensitive effect in males were increased weight of seminal vesicle/coagulation gland with BMDL of 0.2 mg/kg bw/day and increased expression of hepatic CYP1A and CYP2B (BMDLs 0.5-0.7 mg/kg bw/day). In females the most sensitive effect was decreased activity of P450c17 (CYP17), which is a key enzyme in the androgen synthesis pathway, in adrenals (BMDL 0.18 mg/kg bw/day). These results suggest that decaBDE may represent an as yet unreported hazard for reproductive health. (c) 2008 Elsevier Ireland Ltd. All rights reserved

    A 28-day oral dose toxicity study enhanced to detect endocrine effects of a purified technical pentabromodiphenyl ether (pentaBDE) mixture in Wistar rats

    No full text
    A 28-day subacute oral toxicity study was performed in Wistar rats with a purified preparation of the commercial pentabromodiphenyl ether (pentaBDE), DE-71. The applied OECD407 protocol was enhanced for endocrine and immune parameters, and to enable benchmark dose analysis. A vehicle control group and 7 dose groups were included, which received 0.27, 0.82, 2.47, 7.4, 22.2, 66.7 or 200mg pentaBDE/kg bw/d (mkd). The liver appeared to be a key target organ, showing a marked increase of weight and centrilobular hepatocellular hypertrophy, probably due to the observed induction of P450 enzymes, notably CYP1A and CYP2B. A marked decrease of circulating total thyroxine (TT4) and an increase of plasma cholesterol were probably secondary to the liver effects. Furthermore, dose-dependently decreased weight of epididymis, seminal vesicles, and prostate, as well as sperm head deformities in males, and induction of CYP17 activity in adrenals in females were observed, all possibly related to anti-androgenic activity. Finally, we observed a substantial increase of large unstained cells in the blood and a decrease of apolar retinoids in the liver. All these effects had benchmark doses at the lower confidence bound (BMDL) in the low- or mid-dose range, but particular sensitive, potentially adverse effects were TT4 decrease (BMDLs 1.1 in males and 1.8 mkd in females), and decrease of hepatic apolar retinoids (BMDLs 0.5 mkd in males and 2.3 mkd in females). These results contribute to refinement of the hazard identification of pentaBDE and improved risk assessment of human exposure to this industrial chemical and environmental pollutant. (C) 2007 Elsevier Ireland Ltd. All rights reserved
    corecore