279 research outputs found

    Much broader than health: Surveying the diverse co-benefits of energy demand reduction in Europe

    Get PDF
    Demand-side energy reduction measures that aim to reduce energy usage are an effective tool in reducing greenhouse gas emissions as part of a net zero emissions push in Europe. However, often barriers within policymaking hinder deployment. Co-benefits - the secondary benefits of climate change mitigation action - offer an opportunity to reframe energy reduction as financially advantageous and also address a wide range of other policy goals. In support, we survey the type, frequency, and scale of energy demand reduction (EDR) co-benefits in Europe, and assess how these co-benefits can be accounted for in future EDR policymaking. We conduct a review of co-benefits associated with EDR literature. From 53 selected papers, 86 unique co-benefits are identified across five different categories: Health, Energy Security, Economy, Social, and Environment. Economic co-benefits represent the highest proportion. Health/environmental impacts of air quality are the most cited individual co-benefit. While quantification methodology is discussed frequently, only a fifth of the papers attempt primary quantification of energy reduction co-benefits, with most of those concerned only with air quality. Lastly, a matrix framework is developed that conveys quantifiability and required timescales for key individual co-benefits. We propose a four-step plan for improving the use of co-benefits, deepening the evidence base to improve climate change mitigation policy: (1) Work on standardisation of co-benefit terms to aid understanding and quantification, (2) Greater focus on cross-disciplinary co-benefit research to avoid research siloes, (3) Greater research on primary quantification of EDR co-benefits to establish functional methodologies and raise awareness of policymakers, and (4) Given high barriers to entry on co-benefits, greater efforts are needed to take co-benefits to policy-makers

    Popliteal block with transfibular approach in ankle arthrodesis: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Ankle arthrodesis is primarily undertaken to control severe pain in the ankle joint. Immediate postoperative pain is usually treated using oral analgesics, intravenous opiates and regional anaesthesia. The outcomes of ankle fusion, including patient satisfaction studies, are well documented in the literature. However, the advantage of popliteal block in the management of early postoperative pain after ankle fusion for osteoarthritis has not been widely reported. This study aims to determine the role of popliteal block using ankle fusion in the management of ankle osteoarthritis.</p> <p>Case presentation</p> <p>Ankle arthrodeses were performed in 27 patients over a five-year period. Eighteen patients were males (one had bilateral arthrodesis) and eight were females. Their mean age was 56 years and they were all Caucasians. The notes and radiographs of the patients were reviewed in retrospect for the duration of their hospital admission, time to union and complications.</p> <p>Conclusion</p> <p>Popliteal block is a safe and effective technique for postoperative analgesia in ankle arthrodesis. By using this technique, we achieved a significant reduction in the duration of hospital stay for our patients after ankle arthrodesis. The resultant cost saving was GBP717 for each patient.</p

    Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches

    Get PDF
    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; ArgentinaFil: Garavaglia, Matías Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goya, María Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    New Measurement of Parity Violation in Elastic Electron-Proton Scattering and Implications for Strange Form Factors

    Full text link
    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The result is A = -15.05 +- 0.98(stat) +- 0.56(syst) ppm at the kinematic point theta_lab = 12.3 degrees and Q^2 = 0.477 (GeV/c)^2. The measurement implies that the value for the strange form factor (G_E^s + 0.392 G_M^s) = 0.025 +- 0.020 +- 0.014, where the first error is experimental and the second arises from the uncertainties in electromagnetic form factors. This measurement is the first fixed-target parity violation experiment that used either a `strained' GaAs photocathode to produce highly polarized electrons or a Compton polarimeter to continuously monitor the electron beam polarization.Comment: 8 pages, 4 figures, Tex, elsart.cls; revised version as accepted for Phys. Lett.

    Endometrial apoptosis and neutrophil infiltration during menstruation exhibits spatial and temporal dynamics that are recapitulated in a mouse model.

    Get PDF
    Abstract Menstruation is characterised by synchronous shedding and restoration of tissue integrity. An in vivo model of menstruation is required to investigate mechanisms responsible for regulation of menstrual physiology and to investigate common pathologies such as heavy menstrual bleeding (HMB). We hypothesised that our mouse model of simulated menstruation would recapitulate the spatial and temporal changes in the inflammatory microenvironment of human menses. Three regulatory events were investigated: cell death (apoptosis), neutrophil influx and cytokine/chemokine expression. Well-characterised endometrial tissues from women were compared with uteri from a mouse model (tissue recovered 0, 4, 8, 24 and 48 h after removal of a progesterone-secreting pellet). Immunohistochemistry for cleaved caspase-3 (CC3) revealed significantly increased staining in human endometrium from late secretory and menstrual phases. In mice, CC3 was significantly increased at 8 and 24 h post-progesterone-withdrawal. Elastase+ human neutrophils were maximal during menstruation; Ly6G+ mouse neutrophils were maximal at 24 h. Human endometrial and mouse uterine cytokine/chemokine mRNA concentrations were significantly increased during menstrual phase and 24 h post-progesterone-withdrawal respectively. Data from dated human samples revealed time-dependent changes in endometrial apoptosis preceding neutrophil influx and cytokine/chemokine induction during active menstruation. These dynamic changes were recapitulated in the mouse model of menstruation, validating its use in menstrual research

    Comprehensive Analysis of Leukocytes, Vascularization and Matrix Metalloproteinases in Human Menstrual Xenograft Model

    Get PDF
    In our previous study, menstrual-like changes in mouse were provoked through the pharmacologic withdrawal of progesterone with mifepristone following induction of decidualization. However, mouse is not a natural menstruation animal, and the menstruation model using external stimuli may not truly reflect the occurrence and development of the human menstrual process. Therefore, we established a model of menstruation based on human endometrial xenotransplantation. In this model, human endometrial tissues were transplanted subcutaneously into SCID mice that were ovarectomized and supplemented with estrogen and progestogen by silastic implants with a scheme imitating the endocrinological milieu of human menstrual cycle. Morphology, hormone levels, and expression of vimentin and cytokeratin markers were evaluated to confirm the menstrual-like changes in this model. With 28 days of hormone treatment, transplanted human endometrium survived and underwent proliferation, differentiation and disintegration, similar to human endometrium in vivo. Human CD45+ cells showed a peak of increase 28 days post-transplantation. Three days after progesterone withdrawal, mouse CD45+ cells increased rapidly in number and were significantly greater than human CD45+ cell counts. Mouse CD31+ blood vascular-like structures were detected in both transplanted and host tissues. After progesterone withdrawal, the expression levels of matrix metalloproteinases (MMP) 1, 2, and 9 were increased. In summary, we successfully established a human endometrial xenotransplantation model in SCID mice, based on the results of menstrual-like changes in which MMP-1, 2 and 9 are involved. We showed that leukocytes are originated from in situ proliferation in human xenografts and involved in the occurrence of menstruation. This model will help to further understand the occurrence, growth, and differentiation of the endometrium and the underlying mechanisms of menstruation

    Display of probability densities for data from a continuous distribution

    Get PDF
    Based on cumulative distribution functions, Fourier series expansion and Kolmogorov tests, we present a simple method to display probability densities for data drawn from a continuous distribution. It is often more efficient than using histograms.Comment: 5 pages, 4 figures, presented at Computer Simulation Studies XXIV, Athens, GA, 201

    Post-Streptococcal Antibodies Are Associated with Metabolic Syndrome in a Population-Based Cohort

    Get PDF
    Background: Streptococcal infections are known to trigger autoimmune disorders, affecting millions worldwide. Recently, we found an association between post-streptococcal autoantibodies against Protein Disulphide Isomerase (PDI), an enzyme involved in insulin degradation and insulin resistance. This led us to evaluate associations between post-streptococcal antibodies and metabolic syndrome, as defined by the updated National Cholesterol Education Program definition, 2005. Methods and Findings: Metabolic data (HDL, triglycerides, fasting glucose, blood pressure, waist circumference, BMI, smoking), post-streptococcal antibodies (anti-Streptolysin O (ASO) and anti-PDI), and C-reactive protein (CRP, as a general inflammatory marker), were assessed in 1156 participants of the Wisconsin Sleep Cohort Study. Anti-PDI antibodies were found in 308 participants (26.6%), ASO$100 in 258 (22.3%), and 482 (41.7%) met diagnostic criteria for metabolic syndrome. Anti-PDI antibodies but not ASO were significantly associated with metabolic syndrome [n = 1156, OR 1.463 (95 % CI 1.114, 1.920), p = 0.0062; adjusted for age, gender, education, smoking]. Importantly, the anti-PDI- metabolic syndrome association remained significant after adjusting for CRP and fasting insulin. Conclusions: Post-streptococcal anti-PDI antibodies are associated with metabolic syndrome regardless of fasting insulin and CRP levels. Whereas these data are in line with a growing body of evidence linking infections, immunity an

    Phase III randomised trial of doxorubicin-based chemotherapy compared with platinum-based chemotherapy in small-cell lung cancer

    Get PDF
    This randomised trial compared platinum-based to anthracycline-based chemotherapy in patients with small-cell lung cancer (limited or extensive stage) and ⩽2 adverse prognostic factors. Patients were randomised to receive six cycles of either ACE (doxorubicin 50 mg/m2 i.v., cyclophosphamide 1 g/m2 i.v. and etoposide 120 mg/m2 i.v. on day 1, then etoposide 240 mg/m2 orally for 2 days) or PE (cisplatin 80 mg/m2 and etoposide 120 mg/m2 i.v. on day 1, then etoposide 240 mg/m2 orally for 2 days) given for every 3 weeks. For patients where cisplatin was not suitable, carboplatin (AUC6) was substituted. A total of 280 patients were included (139 ACE, 141 PE). The response rates were 72% for ACE and 77% for PE. One-year survival rates were 34 and 38% (P=0.497), respectively and 2-year survival was the same (12%) for both arms. For LD patients, the median survival was 10.9 months for ACE and 12.6 months for PE (P=0.51); for ED patients median survival was 8.3 months and 7.5 months, respectively. More grades 3 and 4 neutropenia (90 vs 57%, P<0.005) and grades 3 and 4 infections (73 vs 29%, P<0.005) occurred with ACE, resulting in more days of hospitalisation and greater i.v. antibiotic use. ACE was associated with a higher risk of neutropenic sepsis than PE and with a trend towards worse outcome in patients with LD, and should not be studied further in this group of patients
    corecore