391 research outputs found

    Marine epibiosis. II. Reduced fouling on Polysyncraton lacazei (Didemnidae, Tunicata) and proposal of an antifouling potential index

    Get PDF
    Polysyncraton lacazei is a colonial tunicate (family didemnidae) living in the NW-mediterranean rocky sublitoral. A thorough scanning of numerous colonies revealed that in spite of an apparently heavy local fouling pressure only one fouling species — a kamptozoan — is encountered with some regularity on Polysyncraton. We try to define the epibiotic situation of sessile marine organisms as composed of four epibiotic parameters: longevity or exposure time (A), epibiont load (E), colonizer pool (CP) and fouling-period (FP). Subsequently, these factors are combined to propose an “Antifouling Potential” index: AFP=(1−E/CP)×A/(FP+A). This index is intended to permit evaluating the relative antifouling defense potency to be expected in a given organism in a given epibiotic situation and to compare different cases of epibiosis and fouling

    Synchronisation of egg hatching of brown hairstreak (Thecla betulae) and budburst of blackthorn (Prunus spinosa) in a warmer future

    Get PDF
    Synchronisation of the phenology of insect herbivores and their larval food plant is essential for the herbivores’ fitness. The monophagous brown hairstreak (Thecla betulae) lays its eggs during summer, hibernates as an egg, and hatches in April or May in the Netherlands. Its main larval food plant blackthorn (Prunus spinosa) flowers in early spring, just before the leaves appear. As soon as the Blackthorn opens its buds, and this varies with spring temperatures, food becomes available for the brown hairstreak. However, the suitability of the leaves as food for the young caterpillars is expected to decrease rapidly. Therefore, the timing of egg hatch is an important factor for larval growth. This study evaluates food availability for brown hairstreak at different temperatures. Egg hatch and budburst were monitored from 2004 to 2008 at different sites in the Netherlands. Results showed ample food availability at all monitored temperatures and sites but the degree of synchrony varied strongly with spring temperatures. To further study the effect of temperature on synchronisation, an experiment using normal temperatures of a reference year (T) and temperatures of T + 5°C was carried out in climate chambers. At T + 5°C, both budburst and egg hatch took place about 20 days earlier and thus, on average, elevated temperature did not affect synchrony. However, the total period of budburst was 11 days longer, whereas the period of egg hatching was 3 days shorter. The implications for larval growth by the brown hairstreak under a warmer climate are considered.

    On the creation of future probabilistic design weather years from UKCP09

    Get PDF
    Copyright © 2011 by SAGE PublicationsWeather data are used extensively by building scientists and engineers to study the performance of their designs, help compare design alternatives and ensure compliance with building regulations. Given a changing climate, there is a need to provide data for future years so that practising engineers can investigate the impact of climate change on particular designs and examine any risk the commissioning client might be exposed to. In addition, such files are of use to building scientists in developing generic solutions to problems such as elevated internal temperatures and poor thermal comfort. With the publication of the UK Climate Projections (UKCP09) such data can be created for future years up to 2080 and for various probabilistic projections of climate change by the use of a weather generator. Here, we discuss a method for the creation of future probabilistic reference years for use within thermal models. In addition, a comparison is made with the current set of future weather years based on the UKCIP02 projections. When used within a dynamic thermal simulation of a building, the internal environments created by the current set of future weather files lie within the range of the internal environments created by the probabilistic reference years generated by the weather generator. Hence, the main advantages of the weather generator are seen to lie in its potentially greater spatial resolution, its ability to inform risk analysis and that such files, unlike ones based on observed data, carry no copyright. Practical applications: The methodology presented in this article will allow academics and buildings engineers to create realistic hourly future weather files using the future climate data of UKCP09 weather generator. This will allow the creation of consistent future weather years for use in areas such as building thermal simulation

    Inherited biotic protection in a Neotropical pioneer plant

    Get PDF
    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants

    Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism

    Get PDF
    In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth

    Sex-Differential Herbivory in Androdioecious Mercurialis annua

    Get PDF
    Males of plants with separate sexes are often more prone to attack by herbivores than females. A common explanation for this pattern is that individuals with a greater male function suffer more from herbivory because they grow more quickly, drawing more heavily on resources for growth that might otherwise be allocated to defence. Here, we test this ‘faster-sex’ hypothesis in a species in which males in fact grow more slowly than hermaphrodites, the wind-pollinated annual herb Mercurialis annua. We expected greater herbivory in the faster-growing hermaphrodites. In contrast, we found that males, the slower sex, were significantly more heavily eaten by snails than hermaphrodites. Our results thus reject the faster-sex hypothesis and point to the importance of a trade-off between defence and reproduction rather than growth

    Ontogenetic changes in leaf traits of tropical rainforest trees differing in juvenile light requirement

    Get PDF
    Relationships between leaf traits and the gap dependence for regeneration, and ontogenetic changes therein, were investigated in juvenile and adult tropical rainforest tree species. The juveniles of the 17 species included in the study were grown in high light, similar to the exposed crowns of the adult trees. The traits were structural, biomechanical, chemical and photosynthetic. With increasing species gap dependence, leaf mass per area (LMA) decreased only slightly in juveniles and remained constant in adults, whereas punch strength together with tissue density decreased, and photosynthetic capacity and chlorophyll increased. Contrary to what has been mostly found in evergreen tropical rainforest, the trade-off between investment in longevity and in productivity was evident at an essentially constant LMA. Of the traits pertaining to the chloroplast level, photosynthetic capacity per unit chlorophyll increased with gap dependence, but the chlorophyll a/b ratio showed no relationship. Adults had a twofold higher LMA, but leaf strength was on average only about 50% larger. Leaf tissue density, and chlorophyll and leaf N per area were also higher, whereas chlorophyll and leaf N per unit dry mass were lower. Ranking of the species, relationships between traits and with the gap dependence of the species were similar for juveniles and adults. However, the magnitudes of most ontogenetic changes were not clearly related to a species’ gap dependence. The adaptive value of the leaf traits for juveniles and adults is discussed

    The Tri-Trophic Interactions Hypothesis: Interactive Effects of Host Plant Quality, Diet Breadth and Natural Enemies on Herbivores

    Get PDF
    Several influential hypotheses in plant-herbivore and herbivore-predator interactions consider the interactive effects of plant quality, herbivore diet breadth, and predation on herbivore performance. Yet individually and collectively, these hypotheses fail to address the simultaneous influence of all three factors. Here we review existing hypotheses, and propose the tri-trophic interactions (TTI) hypothesis to consolidate and integrate their predictions. The TTI hypothesis predicts that dietary specialist herbivores (as compared to generalists) should escape predators and be competitively dominant due to faster growth rates, and that such differences should be greater on low quality (as compared to high quality) host plants. To provide a preliminary test of these predictions, we conducted an empirical study comparing the effects of plant (Baccharis salicifolia) quality and predators between a specialist (Uroleucon macolai) and a generalist (Aphis gossypii) aphid herbivore. Consistent with predictions, these three factors interactively determine herbivore performance in ways not addressed by existing hypotheses. Compared to the specialist, the generalist was less fecund, competitively inferior, and more sensitive to low plant quality. Correspondingly, predator effects were contingent upon plant quality only for the generalist. Contrary to predictions, predator effects were weaker for the generalist and on low-quality plants, likely due to density-dependent benefits provided to the generalist by mutualist ants. Because the TTI hypothesis predicts the superior performance of specialists, mutualist ants may be critical to A. gossypii persistence under competition from U. macolai. In summary, the integrative nature of the TTI hypothesis offers novel insight into the determinants of plant-herbivore and herbivore-predator interactions and the coexistence of specialist and generalist herbivores
    corecore