11 research outputs found

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    Connecting Planetary Composition with Formation

    Full text link
    The rapid advances in observations of the different populations of exoplanets, the characterization of their host stars and the links to the properties of their planetary systems, the detailed studies of protoplanetary disks, and the experimental study of the interiors and composition of the massive planets in our solar system provide a firm basis for the next big question in planet formation theory. How do the elemental and chemical compositions of planets connect with their formation? The answer to this requires that the various pieces of planet formation theory be linked together in an end-to-end picture that is capable of addressing these large data sets. In this review, we discuss the critical elements of such a picture and how they affect the chemical and elemental make up of forming planets. Important issues here include the initial state of forming and evolving disks, chemical and dust processes within them, the migration of planets and the importance of planet traps, the nature of angular momentum transport processes involving turbulence and/or MHD disk winds, planet formation theory, and advanced treatments of disk astrochemistry. All of these issues affect, and are affected by the chemistry of disks which is driven by X-ray ionization of the host stars. We discuss how these processes lead to a coherent end-to-end model and how this may address the basic question.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018). 46 pages, 10 figure

    A remnant planetary core in the hot Neptunian desert

    Get PDF
    The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to major uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary pathways provide a new route to understanding planetary interiors. We present the discovery of TOI-849b, the remnant core of a giant planet, with a radius smaller than Neptune but an anomalously high mass Mp=40.8^{+2.4}_{-2.5} Mearth and density of 5.5 ± 0.8 g cm^{-3}, similar to the Earth. Interior structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than 3.9^{+0.8}_{-0.9}% of the total mass of the planet. TOI-849b transits a late G type star (T_{mag}=11.5) with an orbital period of 18.4 hours, leading to an equilibrium temperature of 1800K. The planet's mass is larger than the theoretical threshold mass for runaway gas accretion. As such, the planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it avoided substantial gas accretion, perhaps through gap opening or late formation. Photo-evaporation rates cannot provide the mass loss required to reduce a Jupiter-like gas giant, but can remove a few Earth mass hydrogen and helium envelope on timescales of several Gyr, implying that any remaining atmosphere is likely to be enriched by water or other volatiles from the planetary interior. TOI-849b represents a unique case where material from the primordial core is left over from formation and available to study

    Hydrodynamics of core-collapse supernovae and their progenitors

    No full text

    Kilonovae

    No full text

    Neutron star mergers and how to study them

    No full text
    corecore