647 research outputs found

    DYNAMIC BEHAVIOR OF TWO ELASTICALLY CONNECTED NANOBEAMS UNDER A WHITE NOISE PROCESS

    Get PDF
    This paper investigates the almost-sure and moment stability of a double nanobeam system under stochastic compressive axial loading. By means of the Lyapunov exponent and the moment Lyapunov exponent method the stochastic stability of the nano system is analyzed for different system parameters under an axial load modeled as a wideband white noise process. The method of regular perturbation is used to determine the explicit asymptotic expressions for these exponents in the presence of small intensity noises

    Uticaj reversne struje na nasipnu masu pri elektrolitičkom taloženju bakarnog praha

    Get PDF
    The possibility of depositing copper powders with different apparent density by changing the shape of reversing current wave is shown. The morphology and crystallinity of powder particles can be varied considerably by changing shape of the reversing current wave and, hence, the apparent density of powders. The relation of apparent density with particle morphology and structure was illustrated.U radu je pokazana mogućnost dobijanja bakarnih prahova različitih nasipnih masa promenom oblika talasa reversne struje. Uspostavljena je zadovoljavajuća veza između morfologije i strukture čestica praha bakra i nasipne mase praha

    Relative-coordinate determination for visual double stars by applying Fourier transforms

    Get PDF
    We discuss the software developed for the purpose of determining the relative coordinates (position angle θ and separation ρ) for visual double or multiple stars. It is based on application of Fourier transforms in treating CCD frames of these systems. The objective was to determine the relative coordinates automatically to an extent as large as possible. In this way the time needed for the reduction of many CCD frames becomes shorter. The capabilities and limitations of the software are examined. Besides, the possibility of improving is also considered. The software has been tested and checked on a sample consisting of CCD frames of 165 double or multiple stars obtained with the 2m telescope at NAO Rozhen in Bulgaria in October 2011. The results have been compared with the corresponding results obtained by applying different software and the agreement is found to be very good

    Almost sure existence of global weak solutions for super-critical Navier-Stokes equations

    Full text link
    In this paper we show that after suitable data randomization there exists a large set of super-critical periodic initial data, in Hα(Td)H^{-\alpha}({\mathbb T}^d) for some α(d)>0\alpha(d) > 0, for both 2d and 3d Navier-Stokes equations for which global energy bounds are proved. As a consequence, we obtain almost sure super-critical global weak solutions. We also show that in 2d these global weak solutions are unique.Comment: 22 pages, a revised argument in Section 5, the d=3d=3 cas

    Piezoelectric polymer/ceramic nanostructures for mechanical energy harvesting

    Get PDF
    Vibration-based mechanical energy is one of the most accessible energy source in the surroundings. Harvesting this type of energy exhibits a great potential for remote/wireless sensing, charging batteries, and powering electronic devices. Piezoelectric and ferroelectric materials, including PZT, BaTiO3, ZnO, polyvinylidene fluoride (PVDF), etc., can be used for converting ambient mechanical energy into electricity. Based on these materials, a variety of micro- or nanoelectromechanical systems can be developed for harvesting energies from random vibrations, mechanical waves, or body movements like walking, running, or typing. Recent investigations on nanocomposites of electroactive ceramics and ferroelectric polymers exploit this approach in order to produce new multifunctional materials for mechanical energy harvesting. Taking into account that mechanical activation is one of the methods for modification of physico-chemical properties of the filler, in this study we investigate the influence of mechanical activation of ZnO particles on structural properties of ZnO/polyvinylidene fluoride nanocomposites. The nanocomposite films were prepared by solution casting method and investigated by X-ray diffraction (XRD) method and Raman spectroscopy, while the microstructure morphology has been analyzed by scanning electron microscope (SEM). Presented results will enable optimization of PVDF processing techniques for the production of new mechanical energy harvesting devices

    Kinetic Measurements on Alkylammonium Halides

    Get PDF
    Chemical relaxation measurements are reported on alkylammonium halides having carbon atoms in the alkyl chain from 10 to 16. Two relaxation times were observed for most of the studied systems. Data are interpreted on the basis of a theory recently developed by G. Aniansson and S. Wall. According to this theory, the fast process is due to a shift of the micellar distribution curve. The residence time of a detergent molecule in the micelle and the half width of the micellar distribution curve are obtained from the fast process. The slow relaxation process is characteristic for the change of the concentration of micelles and permits the evaluation of the concentration of the micellar nuclei and their thermodynamic properties. The obtained results are compared with available data on alkylpyridinium halides

    Low-calorie marmalades

    Get PDF
    The number of people suffering from insulin-dependent (Diabetes Melitus type I) and insulin-independent (Diabetes Melitus type II) is huge, and the number of potential diseased is in permanent rise. For that reason products with reduced amount of sugar have become very popular. Factory "Srbijanka" Valjevo manufactures reduced–sugar marmalades from apricot peach, strawberry, apple and orange. Low–metoxyl pectins and high-grade locust bean gum were used as gelation agents. Sensory evaluation and energy value of these marmalades were determined and all samples were highly graded. All marmalades belonged to the group of low-calorie (dietetic) products

    Influence of process parameters of simultaneous anodization/anaphoretic electrodeposition synthesis of hydroxyapatite/titanium oxide composite coatings on adhesion

    Get PDF
    In-situ synthesis of hydroxyapatite/titanium oxide (HAp/TiO2) coating on titanium was performed via anaphoretic deposition of hydroxyapatite (HAp) and simultaneous anodization of Ti to produce highly adherent and strengthened composite coating. The influence of electric potential, time, electrolyte concentration and pH value of the anodization process on titanium surface roughness and anodization of titanium was examined, as well as influence of same process parameters on adhesion strength and compactness of composite HAp/TiO2 coatings was investigated. Prior to novel in situ method of synthesis of hydroxyapatite/titanium oxide composite coatings by simultaneous anodization/anaphoretic electrodeposition described in this manuscript, optimization of anodization process of titanium was performed. Anodization was executed under different electric potentials and different distances of counter electrodes from working electrodes, but all anodization processes had constant quantity of electric charge. Characterization of titanium samples, prepared from grade 6 Ti, and having rectangular contact surfaces of 10×10×0.89 mm included SEM/EDS analyses, X-ray diffraction analyses, AFM surface topography, morphology and roughness analyses and linear measurements of roughness. A chemical precipitation method was used to prepare hydroxyapatite powder by the reaction of calcium oxide (obtained by calcination of CaCO3 for 5 h at 1000 °C in air) and phosphoric acid. A stoichiometric amount of the calcium oxide was stirred in distilled water and phosphoric acid was added drop wise to the suspension in order to obtain hydroxyapatite powder, Ca10(PO4)6(OH)2. Two types of HAp coatings were prepared, in order to compare the adhesion, morphology and consistency of the HAp and composite HAp/TiO2 on Ti, namely cathaphoretic and anaphoretic coatings, respectively [1,2]. The prepared coatings were characterized by field emission scanning electron microscopy, X-ray diffraction and electron dispersive spectroscopy. Adhesion was investigated by ASTM D 3359 – 97 Test method B. Uniform and adherent HAp/TiO2 composite coating on Ti was obtained. Since smaller size of HAp crystals within highly porous coating structures is of improved binding ability to various biomolecules, our coating is expected to be of excellent coverage and compactness. The obtained coating can be good candidate for bone implants due to improved adhesion

    Surface modification of titanium implants by adherent hydroxyapatite/titanium oxide composite coatings using novel in-situ synthesis

    Get PDF
    The medical devices based on titanium and its alloys are widely used in the repair and replacement of a degraded or inhibited func-tion of locomotor system [1]. Ti and its alloys exhibit high mechanical strength, good workability, resistant to corrosion and low cost. Although, they are widely used as orthopedic and dental implants their inability to interact with living tissue will inhibit their biological fixation and osseoin-tegration [2]. Therefore, to improve the hard-tissue compatibility of Ti various sur-face treatments have been developed for the inorganic coating formation [3]. The hyd-roxyapatite (HAp, Ca10(PO4)6(OH)2) with superior osteogenic activity is a competitive approach to make novel coatings for titanium implants applications. HAp is a calcium phosphate very similar to the inorganic part of the human bone and hard tissues both in morphology and compo-sition. Herein, in-situ synthesis of HAp/TiO2 coating on titanium was performed via ana-phoretic deposition of HAp and simulta-neous anodization of Ti to produce highly adherent and strengthened composite coating. It can be seen that morphology of Ti substrate of anHAP/TiO2 coating is of tubular shape, and tube formation occurs mainly due to competing processes of anodization and electrophoretic deposition of HAp. anHAp/TiO2 coating does not need sintering process, and simultaneous Ti anodization and HAp deposition occur, where HAp crystals incorporate in the anodized Ti surface. From the presented results it can be concluded that novel suggested process of in situ simultaneous anHAp/TiO2 deposition with Ti surface anodization gives much better results that cathaphoretic deposition regarding adhesion
    corecore