3,070 research outputs found

    A Data Exchange Standard for Optical (Visible/IR) Interferometry

    Full text link
    This paper describes the OI Exchange Format, a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS), and supports storage of the optical interferometric observables including squared visibility and closure phase -- data products not included in radio interferometry standards such as UV-FITS. The format has already gained the support of most currently-operating optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI, and the Keck Interferometer, and is endorsed by the IAU Working Group on Optical Interferometry. Software is available for reading, writing and merging OI Exchange Format files.Comment: 26 pages, 1 figur

    Spatial Reference Frames for Object Recognition: Tuning for Rotations in Depth

    Get PDF
    The inferior temporal cortex (IT) of monkeys is thought to play an essential role in visual object recognition. Inferotemporal neurons are known to respond to complex visual stimuli, including patterns like faces, hands, or other body parts. What is the role of such neurons in object recognition? The present study examines this question in combined psychophysical and electrophysiological experiments, in which monkeys learned to classify and recognize novel visual 3D objects. A population of neurons in IT were found to respond selectively to such objects that the monkeys had recently learned to recognize. A large majority of these cells discharged maximally for one view of the object, while their response fell off gradually as the object was rotated away from the neuron"s preferred view. Most neurons exhibited orientation-dependent responses also during view-plane rotations. Some neurons were found tuned around two views of the same object, while a very small number of cells responded in a view- invariant manner. For five different objects that were extensively used during the training of the animals, and for which behavioral performance became view-independent, multiple cells were found that were tuned around different views of the same object. No selective responses were ever encountered for views that the animal systematically failed to recognize. The results of our experiments suggest that neurons in this area can develop a complex receptive field organization as a consequence of extensive training in the discrimination and recognition of objects. Simple geometric features did not appear to account for the neurons" selective responses. These findings support the idea that a population of neurons -- each tuned to a different object aspect, and each showing a certain degree of invariance to image transformations -- may, as an assembly, encode complex 3D objects. In such a system, several neurons may be active for any given vantage point, with a single unit acting like a blurred template for a limited neighborhood of a single view

    Viewer-Centered Object Recognition in Monkeys

    Get PDF
    How does the brain recognize three-dimensional objects? We trained monkeys to recognize computer rendered objects presented from an arbitrarily chosen training view, and subsequently tested their ability to generalize recognition for other views. Our results provide additional evidence in favor of with a recognition model that accomplishes view-invariant performance by storing a limited number of object views or templates together with the capacity to interpolate between the templates (Poggio and Edelman, 1990)

    Racial Disparities in Breast Cancer Survival: The Mediating Effects of Macro-Social Context and Social Network Factors

    Full text link
    ABSTRACT This study attempts to clarify the associations between macro-social and social network factors and continuing racial disparities in breast cancer survival. The study improves on prior methodologies by using a neighborhood disadvantage measure that assesses both economic and social disadvantage and an ego-network measurement tool that assesses key social network characteristics. Our population-based sample included 786 breast cancer patients (nHWhite=388; nHBlack=398) diagnosed during 2005-2008 in Chicago, IL. The data included census-derived macro-social context, self-reported social network, self-reported demographic and medically abstracted health measures. Mortality data from the National Death Index (NDI) were used to determine 5-year survival. Based on our findings, neighborhood concentrated disadvantage was negatively associated with survival among nHBlack and nHWhite breast cancer patients. In unadjusted models, social network size, network density, practical support, and financial support were positively associated with 5-year survival. However, in adjusted models only practical support was associated with 5-year survival. Our findings suggest that the association between network size and breast cancer survival is sensitive to scaling of the network measure, which helps to explain inconsistencies in past findings. Social networks of nHWhites and nHBlacks differed in size, social support dimensions, network density, and geographic proximity. Among social factors, residence in disadvantaged neighborhoods and unmet practical support explained some of the racial disparity in survival. Differences in late stage diagnosis and comorbidities between nHWhites and nHBlacks also explained some of the racial disparity in survival. Our findings highlight the relevance of social factors, both macro and inter-personal in the racial disparity in breast cancer survival. Findings suggest that reduced survival of nHBlack women is in part due to low social network resources and residence in socially and economically deprived neighborhoods. Our findings indicate that, to improve survival among breast cancer patients, policies need to focus on continued improvement of access to care and reduction of racially patterned social and economic hardship. Additionally, our findings support the need for health care providers to assess social support resources of breast cancer patients at the time of diagnosis

    Generalized Centrifugal Force Model for Pedestrian Dynamics

    Get PDF
    A spatially continuous force-based model for simulating pedestrian dynamics is introduced which includes an elliptical volume exclusion of pedestrians. We discuss the phenomena of oscillations and overlapping which occur for certain choices of the forces. The main intention of this work is the quantitative description of pedestrian movement in several geometries. Measurements of the fundamental diagram in narrow and wide corridors are performed. The results of the proposed model show good agreement with empirical data obtained in controlled experiments.Comment: 10 pages, 14 figures, accepted for publication as a Regular Article in Physical Review E. This version contains minor change

    Nature of complex singularities for the 2D Euler equation

    Full text link
    A detailed study of complex-space singularities of the two-dimensional incompressible Euler equation is performed in the short-time asymptotic r\'egime when such singularities are very far from the real domain; this allows an exact recursive determination of arbitrarily many spatial Fourier coefficients. Using high-precision arithmetic we find that the Fourier coefficients of the stream function are given over more than two decades of wavenumbers by \hat F(\k) = C(\theta) k^{-\alpha} \ue ^ {-k \delta(\theta)}, where \k = k(\cos \theta, \sin \theta). The prefactor exponent α\alpha, typically between 5/2 and 8/3, is determined with an accuracy better than 0.01. It depends on the initial condition but not on θ\theta. The vorticity diverges as sβs^{-\beta}, where α+β=7/2\alpha+\beta= 7/2 and ss is the distance to the (complex) singular manifold. This new type of non-universal singularity is permitted by the strong reduction of nonlinearity (depletion) which is associated to incompressibility. Spectral calculations show that the scaling reported above persists well beyond the time of validity of the short-time asymptotics. A simple model in which the vorticity is treated as a passive scalar is shown analytically to have universal singularities with exponent α=5/2\alpha =5/2.Comment: 22 pages, 24 figures, published version; a version of the paper with higher-quality figures is available at http://www.obs-nice.fr/etc7/euler.pd

    Constraining Disk Parameters of Be Stars using Narrowband H-alpha Interferometry with the NPOI

    Full text link
    Interferometric observations of two well-known Be stars, gamma Cas and phi Per, were collected and analyzed to determine the spatial characteristics of their circumstellar regions. The observations were obtained using the Navy Prototype Optical Interferometer equipped with custom-made narrowband filters. The filters isolate the H-alpha emission line from the nearby continuum radiation, which results in an increased contrast between the interferometric signature due to the H-alpha-emitting circumstellar region and the central star. Because the narrowband filters do not significantly attenuate the continuum radiation at wavelengths 50 nm or more away from the line, the interferometric signal in the H-alpha channel is calibrated with respect to the continuum channels. The observations used in this study represent the highest spatial resolution measurements of the H-alpha-emitting regions of Be stars obtained to date. These observations allow us to demonstrate for the first time that the intensity distribution in the circumstellar region of a Be star cannot be represented by uniform disk or ring-like structures, whereas a Gaussian intensity distribution appears to be fully consistent with our observations.Comment: 23 pages, 14 figures, accepted for publication in A

    ISO observations of the Galactic center Interstellar Medium: neutral gas and dust

    Full text link
    The 500 central pc of the Galaxy (hereafter GC) exhibit a widespread gas component with a kinetic temperature of 100-200 K. The bulk of this gas is not associated to the well-known thermal radio continuum or far infrared sources like Sgr A or Sgr B. How this gas is heated has been a longstanding problem. With the aim of studying the thermal balance of the neutral gas and dust in the GC, we have observed 18 molecular clouds located at projected distances far from thermal continuum sources with the Infrared Space Observatory (ISO). In this paper we present observations of several fine structure lines and the full continuum spectra of the dust between 40 and 190 microns. A warm dust component with a temperature between 27 and 42 K is needed to fit the spectra. We have compared the gas and the dust emission with the predictions from J-type and C-type shocks and photodissociation region (PDRs) models. We conclude that the dust and the fine structure lines observations are best explained by a PDR with a density of 103^3 cm^-3 and an incident far-ultraviolet field 103^3 times higher than the local interstellar radiation field. PDRs can naturally explain the discrepancy between the gas and the dust temperatures. However, these PDRs can only account for 10-30% of the total H2 column density with a temperature of ~ 150 K. We discuss other possible heating mechanisms (short version).Comment: Accepted for publication by A&

    CT imaging of ascaris lumbricoides

    Get PDF
    A 37-year-old man was referred to the department of internal medicine for chronic fever, asthenia and loss of weight. He had no relevant medical history but reported frequent travels to Africa. Abdominal-CT study with contrast agent injection and oral digestive opacification was performed and revealed pleuroperitoneal and pericardial effusions with multiple mediastinal and mesenteric lymphadenopathies. Bronchoalveolar lavage and sputum expectoration analyses demonstrated systemic tuberculosis
    corecore