12,954 research outputs found
High temperature, short term tensile strength of C6000/PMR-15 composites
Tensile tests were conducted on 0 unidirectionally reinforced Celion 6000 graphite fibers in PMR-15 polyimide matrix. Tensile strengths for coupons subjected to short and long term uniform temperatures were obtained. Thick coupons, heated on one side to produce significant transient through thickness temperature gradients, were tested and compared to the strength of specimens with uniform temperature distributions. All coupons were radiantly heated and reached maximum test temperatures within 15 sec. Tensile loads were applied to the coupons after 15 sec of elevated temperature exposure. Loading rates were selected so that specimen failures occurred within a maximum of 45 sec after reaching the test temperature. Results indicate that significant tensile strength remains beyond the material post cure temperature
Explaining the fuel protests
We describe and analyse the fuel protests in the UK in September and November 2000. We draw on theories of social movements to explain the success of the first of these protests and the failure of the second. We show how the loose, network forms of organisation contributed to the success in September, and the attempts to impose more formal organisations helped to cause the failure in November. We also show how the success of the protests depended on the articulation of the aims of the protestors with dominant social forces in British politics, in particular the oil companies, the police, and the mass media
Calculations of Potential Energy Surfaces Using Monte Carlo Configuration Interaction
We apply the method of Monte Carlo configuration interaction (MCCI) to
calculate ground-state potential energy curves for a range of small molecules
and compare the results with full configuration interaction. We show that the
MCCI potential energy curve can be calculated to relatively good accuracy, as
quantified using the non-parallelity error, using only a very small fraction of
the FCI space. In most cases the potential curve is of better accuracy than its
constituent single-point energies. We finally test the MCCI program on systems
with basis sets beyond full configuration interaction: a lattice of fifty
hydrogen atoms and ethylene. The results for ethylene agree fairly well with
other computational work while for the lattice of fifty hydrogens we find that
the fraction of the full configuration interaction space we were able to
consider appears to be too small as, although some qualitative features are
reproduced, the potential curve is less accurate.Comment: 14 pages, 22 figure
Complex permeability of soft magnetic ferrite polyester resin composites at frequencies above 1 MHz
Composite soft magnetic materials consist of magnetic particles in a non-magnetic matrix. The properties of such materials can be modelled using effective medium theory. Measurements have been made of the complex permeability of composites produced using ferrite powder and polyester resin. The success of various effective medium expressions in predicting the variation of complex permeability with composition has been assessed
Monte Carlo configuration interaction applied to multipole moments, ionisation energies and electron affinities
The method of Monte Carlo configuration interaction (MCCI) [1,2] is applied
to the calculation of multipole moments. We look at the ground and excited
state dipole moments in carbon monoxide. We then consider the dipole of NO, the
quadrupole of the nitrogen molecule and of BH. An octupole of methane is also
calculated. We consider experimental geometries and also stretched bonds. We
show that these non-variational quantities may be found to relatively good
accuracy when compared with FCI results, yet using only a small fraction of the
full configuration interaction space. MCCI results in the aug-cc-pVDZ basis are
seen to generally have reasonably good agreement with experiment. We also
investigate the performance of MCCI when applied to ionisation energies and
electron affinities of atoms in an aug-cc-pVQZ basis. We compare the MCCI
results with full configuration-interaction quantum Monte Carlo [3,4] and
`exact' non-relativistic results [3,4]. We show that MCCI could be a useful
alternative for the calculation of atomic ionisation energies however electron
affinities appear much more challenging for MCCI. Due to the small magnitude of
the electron affinities their percentage errors can be high, but with regards
to absolute errors MCCI performs similarly for ionisation energies and electron
affinities.Comment: 12 pages, 20 figure
A comparative study of benchmarking approaches for non-domestic buildings: Part 1 – Top-down approach
Benchmarking plays an important role in improving energy efficiency of non-domestic buildings. A review of energy benchmarks that underpin the UK’s Display Energy Certificate (DEC) scheme have prompted necessities to explore the benefits and limitations of using various methods to derive energy benchmarks. The existing methods were reviewed and grouped into top-down and bottom-up approaches based on the granularity of the data used. In the study, two top-down methods, descriptive statistics and artificial neural networks (ANN), were explored for the purpose of benchmarking energy performances of schools. The results were used to understand the benefits of using these benchmarks for assessing energy efficiency of buildings and the limitations that affect the robustness of the derived benchmarks. Compared to the bottom-up approach, top-down approaches were found to be beneficial in gaining insight into how peers perform. The relative rather than absolute feedback on energy efficiency meant that peer pressure was a motivator for improvement. On the other hand, there were limitations with regard to the extent to which the energy efficiency of a building could be accurately assessed using the top-down benchmarks. Moreover, difficulties in acquiring adequate data were identified as a key limitation to using the top-down approach for benchmarking non-domestic buildings. The study suggested that there are benefits in rolling out of DECs to private sector buildings and that there is a need to explore more complex methods to provide more accurate indication of energy efficiency in non-domestic buildings
Physical and chemical signatures of a developing anticyclonic eddy in the Leeuwin Current, eastern Indian Ocean
A multidisciplinary cruise aboard the R/V Southern Surveyor was conducted in May 2006 to sample a developing anticyclonic eddy of the Leeuwin Current off Western Australia. The eddy formed from a meander of the Leeuwin Current in mid-April 2006 and remained attached to the current until mid-August. In this study, a combination of satellite data (altimeter, sea surface temperature, and chlorophyll a) and shipboard measurements (acoustic Doppler current profiler and conductivity-temperature-depth) were used to characterize the physical and chemical signatures of the eddy. The temperature-salinity properties of the mixed layer waters within the anticyclonic eddy and on the shelf were both connected to that of the Leeuwin Current, indicating the water mass in the eddy is mainly derived from the Leeuwin Current and the modified Leeuwin Current water on the shelf. Above the salinity maximum near the eddy center, there was a regionally significant concentration of nitrate (>0.9 μmol L-1), and the maximum (2 μmol L-1) was at 150 in depth, below the photic zone. Nitrification within the eddy and/or local upwelling due to the forming eddy could be responsible for this high concentration of nitrate near the eddy center which potentially makes the eddy a relatively productive feature in the Leeuwin Current
The private and public life domains of Arab youth in Canada: Acculturation, ethnic identity, social support, and adjustment
Participants were recruited primarily from online and student groups resulting in a total of 99 participants (74 females, 25 males; age range: 15-21). Having a positive Arab orientation predicted family satisfaction and having a positive European-Canadian orientation predicted school and living environment satisfaction, as well as fewer invalid school absences. These results corroborate previous research findings differentiating between psychological and sociocultural adjustment, but also show that having a positive Arab acculturation orientation predicts psychological adaptation in private domains and having a positive European-Canadian acculturation orientation predicts psychological adaptation in public domains. Perceived social support received from family mediated the relation between Arab acculturation orientation and private life satisfaction, indicating that family support plays a crucial role in interpreting the relation between acculturation and adjustment. Gender comparisons revealed that males, as compared to females, reported stronger ethnic identities
On log concavity for order-preserving and order-non-reversing maps of partial orders
Stanley used the Aleksandrov-Fenchel inequalities from the theory of nixed volumes to prove the following result. Let P be a partially ordered set with n elements, and let x ∊ P. If Ni* is the number of linear extensions , ⋋ : P + (1 , 2,...,n) satisfying ⋋ (x) = i, then the sequence N*1,…,N*n is log concave (and therefore unimodal). Here the analogous results for both order-preserving and order-non-reversing maps are proved using an explicit injection. Further, if vc is the number of order-preserving maps of P into a chain of length c, then vc is shown to be 1-og concave, and the corresponding result is established for order-non-reversing maps
Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation
The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data
- …