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Calculations of potential energy surfaces using Monte Carlo
configuration interaction

Jeremy P. Coe, Daniel J. Taylor, and Martin J. Patersona)

Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, United Kingdom

(Received 8 July 2012; accepted 26 October 2012; published online 21 November 2012)

We apply the method of Monte Carlo configuration interaction (MCCI) to calculate ground-state
potential energy curves for a range of small molecules and compare the results with full configu-
ration interaction. We show that the MCCI potential energy curve can be calculated to relatively
good accuracy, as quantified using the non-parallelity error, using only a very small fraction of the
full configuration interaction space. In most cases the potential curve is of better accuracy than
its constituent single-point energies. We finally test the MCCI program on systems with basis sets
beyond full configuration interaction: a lattice of 50 hydrogen atoms and ethylene. The results for
ethylene agree fairly well with other computational work while for the lattice of 50 hydrogens we
find that the fraction of the full configuration interaction space we were able to consider appears
to be too small as, although some qualitative features are reproduced, the potential curve is less
accurate. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767052]

I. INTRODUCTION

Full configuration interaction (FCI) enables, in theory,
a quantum system to be modelled as accurately as possible
within a given basis set, but the rapidly increasing number of
configurations means that such calculations are out of reach
except for sufficiently small molecules and basis sets. Stan-
dard truncation methods, such as considering only single and
double excitations with respect to a reference state or restrict-
ing excitations to a pre-defined space, can reduce the size of
the calculation but often at the expense of the accuracy and
consistency of the correlation energy as important configura-
tions may be neglected.

It is acknowledged, however, that a large proportion
of the states in many full configuration interaction wave-
functions tend to have practically negligible coefficients and
should not be expected to individually contribute substantially
to the properties of the wavefunction. Novel approaches to
truncated configuration interaction have been developed to
attempt to tackle the difficulties posed by the exceedingly
rapid growth of the standard full CI space by exploiting this
observation and trying to seek out the important states, see
Ref. 1 for a recent review. For example these include a priori
estimates,2, 3 Monte Carlo sampling of a density-matrix renor-
malization group (DMRG) calculation4 and estimates from
perturbation theory.5 Another promising method is that of
Monte Carlo configuration interaction (MCCI) developed
originally by Greer.6, 7 In MCCI a trial wavefunction is ran-
domly augmented with coupled states in an iterative scheme
where those states with coefficients smaller than a certain
value in the resulting solution of the Schrödinger equation
are eventually removed. Even without prior knowledge of the

a)Electronic mail: m.j.paterson@hw.ac.uk.

important configurations or molecular orbitals such a proce-
dure can, in principle, result in a compact wavefunction which
recreates much of the energy of the FCI wavefunction but us-
ing only a small fraction of the FCI states.

Single-reference methods based on coupled-cluster8 such
as coupled-cluster singles doubles (CCSD)9 are considered to
have some of the best efficiencies in calculations for systems
in which the FCI expansion would have one dominant con-
figuration and the correlation is considered dynamic. How-
ever, they may have problems—especially if the restricted
Hartree-Fock determinant is used as a reference—when there
are a number of important configurations and the system is
deemed multireference. These configurations are associated
with static correlation and, e.g., dissociation energies may
be modelled incorrectly. For multireference systems the as-
sociated static correlation may be accounted for by using
methods such as complete active space self-consistent field
(CASSCF),10 but insight is required into the selection of or-
bitals for the active space and the calculation becomes in-
tractable as the size of the active space increases. If the
orbitals have been selected appropriately then perturbation
methods (CASPT2) or multi-reference configuration interac-
tion (MRCI) may then be used to account for the remaining
dynamic correlation but at relatively high cost. In principle
MCCI can give a compact wavefunction which can account
for both static and dynamic correlation with minimal user
choices: the accuracy and size of the calculation is essentially
controlled only by the coefficient cut-off parameter cmin.

MCCI has been successfully applied to the single point
energy of the water molecule,6 and the dissociation energy of
HF and H2O.11 Electronic excitation energies have also been
calculated12 for the first-row atoms beginning with carbon—
and also for silicon—with relatively small average errors and
numbers of states. While the excitation energies of molecules
CH2, C2, N2, and H2O were considered in Ref. 13 with only
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tens of meV error and using only a very small proportion of
the states compared with FCI.

In this work, we investigate the ability of MCCI to cal-
culate potential energy curves. If the MCCI results can have
an almost balanced error across different geometries then we
should be able to produce a curve of better accuracy, as quan-
tified by the non-parallelity error, than its constituent single-
point energies. We first assess the usefulness of this method on
molecules with basis sets for which FCI results exist. We look
at potential curves with respect to the dissociation of one hy-
drogen from HF, BH, and CH4. The curves for bond stretches
are produced for C2, F2, N2, and H12. The potential curves for
NH3 inversion and the model formation of BeH2 along the re-
action coordinate are also calculated. Finally systems beyond
the scope of current FCI are also investigated. We calculate a
potential curve for H50 which we compare with DMRG14 re-
sults, and a potential curve for ethylene as the torsional angle
is varied which we compare with other computational results.

II. METHOD

A FCI wavefunction may be written in the notation of
second quantization as

|�〉 = c0 |�0〉 +
∑

i,j

c
j

i a
†
j ai |�0〉

+
∑

k<i,l<j

c
jl

ika
†
l aka

†
j ai |�0〉 + · · · , (1)

where a
†
i (ai) creates (annihilates) the orbital i in a state. Here

letters appearing as subscripts on the coefficients label occu-
pied orbitals in the reference state |�0〉 while superscripts are
unoccupied orbitals in the reference. A traditional truncation
would limit the calculation size by only including substitu-
tions up to a certain substitution level. Limiting the expansion
to only the depicted terms in Eq. (1) would correspond to
a CISD calculation. MCCI instead randomly augments a
wavefunction |�〉 = ∑

i

ci|ψ i〉 with coupled configurations,

i.e., states 〈ψ j| such that 〈ψj |Ĥ |�〉 �= 0 so that, in principle,
the important configurations can eventually be found regard-
less of their substitution level. Configuration state functions
(CSFs) are used in MCCI rather than the more usual Slater
determinants (SDs). This means that the MCCI wavefunction
fulfils at least one of the requirements of the exact wavefunc-
tion: it is an eigenfunction of Ŝ2. In addition fewer states are
needed, e.g., the ratio of SDs to the number of CSFs15 when
S = Ms = 0 for 8 electrons and 30 basis functions is around
4.4. One downside is that the calculation of the overlap and
Hamiltonian matrix is more complicated than when using
SDs.16

We briefly describe the full procedure for the MCCI
algorithm6, 7 which consists of branching, diagonalization,
and pruning. In the branching step, coupled CSFs, created
by a symmetry preserving stochastic single or double substi-
tution with equal probability in the current set of CSFs, are
added. Branching is always attempted from CSFs with a co-
efficient greater than a certain value while other CSFs each
have probability one half of being used. The coefficients are

then found for the approximate wavefunction expanded in this
augmented set of CSFs by solving the generalised eigenvalue
problem of H c = ESc. Here H and S are the Hamiltonian and
overlap matrix within this subspace. Finally there is a pruning
step: added CSFs with coefficients less than a certain value,
cmin, in the wavefunction expansion are then discarded. These
three steps are repeated for a large enough number of itera-
tions so that the energy appears to have converged. In addi-
tion, every k iterations (where k = 10 in this work) a pruning
step is implemented whereby all of the CSFs in the wavefunc-
tion are also considered as candidates for removal depending
on the magnitude of their coefficient. Furthermore there is no
branching or pruning on the last iteration, but a full pruning
step is carried out on the penultimate iteration. The program
can run in parallel where states that have been added and re-
tained at each step on each processor are shared with all other
processors. The results in this work come from MCCI calcu-
lations using either eight or twelve processors.

We initialise the procedure with the CSF formed from
the restricted Hartree-Fock wavefunction within a given ba-
sis. New Hartree-Fock orbitals are calculated at each geome-
try. For the calculation of the Hartree-Fock molecular orbitals
and their one-electron and two-electron integrals we use the
MOLPRO package.17

III. RESULTS

As the potential is defined up to an additive constant then
it is the shape of the potential energy curve that is important.
So two curves that differed only by a constant would for all
practical purposes be the same. A useful approach to quan-
tify the accuracy of the MCCI potential curve is therefore the
non-parallelity error (NPE)18 defined here for an approximate
energy Eapprox as

NPE = max
R

∣∣EFCI
R − E

approx
R

∣∣ − min
R

∣∣EFCI
R − E

approx
R

∣∣,
(2)

where R ranges over all considered bond lengths.
Hence if we can achieve a balanced accuracy in the en-

ergy across the geometries we can recover a potential energy
curve with higher accuracy than its single-point energies. We
note that this is not necessarily guaranteed as if many points
are essentially the FCI energy but there are a few points with
large errors then the NPE would be high but the mean single-
point energy error could be relatively low. To investigate this
we attempt to use a small enough cmin, where computationally
feasible, to produce a sufficiently accurate curve.

A. Hydrogen dissociation

We first consider varying the length of a bond with hy-
drogen in BH, HF, and CH4 and compare the potential energy
curves with FCI results from Ref. 19. These potential curves
represent one of the simplest dissociations: the breaking of a
bond to hydrogen. As such they would be expected to have
some multireference character and make an interesting test
case for MCCI to be compared with other methods. For these
three systems one core orbital is frozen in all the results.
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FIG. 1. MCCI and FCI results19 for energy (Hartree) against bond length
R (angstrom) for HF with the 6-31G** basis set and one frozen core orbital.

1. HF

We see in Fig. 1 that the shape of the HF FCI curve in
a 6-31G* basis is reproduced by MCCI and it appears that
for this system, apart from the energy shift, there is not much
difference between the two cut-off values. The reduction in
NPE by decreasing the cut-off value from cmin = 5 × 10−3

to cmin = 5 × 10−4 is 5.7 to 1.3 kcal/mol. These NPE com-
pare very favourably with methods based on a single reference
where CCSD gives a value of 13.0 kcal/mol, the CCSD(T)
NPE is as high as 26.8 kcal/mol, while that of UCCSD(T)
is 3.7 kcal/mol.19 For the multireference approaches con-
sidered in Ref. 20, a NPE of 17.69 kcal/mol was found
for CASSCF(8, 5) “valence active space” and 4.83 kcal/mol
for CASSCF(8, 8) “1:1 active space.” CASPT2(8, 5) and
CASPT2(8, 8) resulted in NPEs of 2.77 and 0.5 kcal/mol.
The NPEs for SOCI(8, 5) and SOCI(8, 8) were 3.20 and
0.04 kcal/mol, respectively. Reference 21 looked into using
a minimal active space (one bonding orbital and one anti-
bonding orbital for each broken bond) and although their
CASSCF(2, 2) had a higher NPE (18.66 kcal/mol) than
when using the aforementioned active spaces, the CASPT2
value was lower at 0.47 kcal/mol and the SOCI was bet-
ter than when using the larger valence active space but, at
0.98 kcal/mol, not as good as when using the 1:1 active space.

The larger cut-off for MCCI required 172.3 CSFs on av-
erage, while the smaller needed 1 337. The full configuration
space consisted of 3 756 816 SDs19 so only a very small frac-
tion were used by MCCI to give a NPE of a few kcal/mol (see
Table I).

TABLE I. MCCI mean CSFs compared with FCI symmetry-adapted SDs.

Method BH states HF states CH4 states

MCCI0.005 (CSFs) 333.1 172.3 417.0
MCCI0.0005 (CSFs) 4219.6 1337.0 4272.0
FCI (SDs) 15 132 412 3 756 816 26 755 625
MCCI0.005 fraction 0.0022% 0.0046% 0.0016%
MCCI0.0005 fraction 0.028% 0.036% 0.016%

FIG. 2. Error in two MCCI runs with cmin = 5 × 10−3 compared with the
FCI results19 against bond length R (angstrom) for HF with the 6-31G**
basis set and one frozen core orbital.

Figures 2 and 3 show that the MCCI results are closest
to the FCI when the bond length is large. We also see that
rerunning the calculations with a different random number
seed does not change the error much and the variation in error
seems to be lower as the cut-off is decreased.

As the MCCI potential curves (Fig. 1) appear to have
essentially reached dissociation, we may compare MCCI
energies at R = 4 Å with the total energy from appropriate
MCCI calculations on the fragments to indicate how close the
MCCI calculation is to size consistency. We find a difference
of 4.0 kcal/mol for the larger cut-off and 0.15 kcal/mol for
the smaller cut-off.

2. BH

The results for BH were calculated in an aug-cc-pVQZ
basis. Preliminary MCCI results for BH are contained in
Ref. 1. In Fig. 4, we can see that with a cut-off of 5 × 10−3

the general shape of the MCCI potential curve is qualitatively
correct with the minimum in approximately the right place
and a well-behaved dissociation although there is a small
shoulder in the potential around R = 3 Å. The limiting value

FIG. 3. Error in two MCCI runs cmin = 5 × 10−4 compared with the FCI
results19 against bond length R (angstrom) for HF with the 6-31G** basis set
and one frozen core orbital.
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FIG. 4. MCCI and FCI results19 for energy (Hartree) against bond length
R (angstrom) for BH with the aug-cc-pVQZ basis set and one frozen core
orbital. Adapted from Ref. 1.

of the energy is reached too early however. By decreasing
cmin to 5 × 10−4 the curve is almost that of the FCI shifted by
a small energy. The NPE is 22.8 kcal/mol in the former case
and reduces to 2.6 kcal/mol with the smaller cmin value. For
this value of cmin the mean number of CSFs was only 4220
compared with around 15 × 106 Slater determinants in the
FCI space (see Table I) while 330 were required on average
for the larger case. From Ref. 19, the NPE value for CCSD
was 8.1 kcal/mol, that of CCSD(T) was 23.3 kcal/mol while
UCCSD(T) had a NPE as low as 3.1 kcal/mol. Multireference
methods have also been considered20 and compared with FCI
results for the potential curve of BH but with a smaller range
and a cc-pVQZ basis as there were difficulties in convergence
when using the aug-cc-pVQZ basis. Although not a direct
comparison, we note that the CASSCF(4, 4) “valence active
space” there had a NPE of 12.68 kcal/mol, CASSCF(4,
5) “1:1 active space” gave 9.38 kcal/mol, CASPT2(4, 5)
gave 3.16 kcal/mol while only the second-order CI (SOCI)
results were lower than the MCCI value in this work at 0.29
and 1.54 kcal/mol for active spaces of (4, 4) and (4, 5),
respectively.

We see in Fig. 5 that the energy error for this system
at cmin = 5 × 10−4 when compared with FCI generally de-
creases as the bond length increases. We note that the differ-
ence between the MCCI energy at R = 6 Å and the total MCCI
energy for the fragments is 6.6 kcal/mol at cmin = 5 × 10−3

and 0.83 kcal/mol at cmin = 5 × 10−4.

3. CH4

As in Ref. 19 a tetrahedral geometry was used for
methane with bond length 1.086 Å for the three carbon-
hydrogen bonds that were not varied. Preliminary MCCI
results for CH4 are contained in Ref. 1. Figure 6 shows
that, in a 6-31G* basis, MCCI again captures the shape
of the FCI potential curve. Now it appears that the larger
cut-off may be a little too high in energy at large R com-
pared with the equilibrium geometry. This is quantified us-
ing the NPE which is 10.3 kcal/mol for cmin = 5 × 10−3

but drops to 0.6 kcal/mol at the smaller cut-off. We note

FIG. 5. MCCI (cmin = 5 × 10−4) energy error (Hartree) when compared
with FCI results against the bond length R (angstrom) for BH with the aug-
cc-pVQZ basis set and one frozen core orbital. The NPE is 2.6 kcal/mol.

that in Ref. 19, CCSD gave a value of 10.3 kcal/mol,
UCCSD gave 5.1 kcal/mol while UCCSD(T) was as low as
3.2 kcal/mol. In Ref. 20, the definition of the 1:1 active
space was equivalent to the valence active space in this
case and gave CASSCF(8, 8) with a NPE of 6.34 kcal/mol,
CASPT2(8, 8) gave 1.56 kcal/mol, CISD[TQ](8, 8) gave
1.33 kcal/mol, while only SOCI(8, 8) had a lower NPE than
the MCCI results with 0.3 kcal/mol. The minimal active
space results21 had a NPE of 9.25 kcal/mol for CASSCF(2,2),
with CASPT2 at 1.22 kcal/mol and SOCI a little worse with
0.6 kcal/mol. Hence only one of the results from these two
works using multireference methods gave a lower NPE for
methane.

The FCI space is around 26.7 × 106 SDs,19 but in
Table I we see that the MCCI results are achieved using only
417 and 4 272 CSFs on average for the larger and smaller cmin,
respectively.

In Fig. 7, we see that the error in the energy compared
with FCI is greatest at very small bond lengths and now
the minimum error is at bond lengths a little longer than
that at equilibrium, but the errors are all very small. The
difference in energies between MCCI applied to the system

FIG. 6. MCCI and FCI results19 for energy (Hartree) against one carbon-
hydrogen bond length R (angstrom) for CH4 with the 6-31G* basis set and
one frozen core orbital. Adapted from Ref. 1.
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FIG. 7. MCCI (cmin = 5 × 10−4) energy error (Hartree) when compared
with FCI results against one carbon-hydrogen bond length R (angstrom) for
CH4 with the 6-31G* basis set and one frozen core orbital. The NPE is
0.6 kcal/mol.

at R = 4.6 Å and the sum of MCCI applied to the fragments
is 15 kcal/mol at the larger cut-off and 0.79 kcal/mol at the
smaller cut-off. For HF, BH and CH4 at cmin = 5 × 10−3

the difference between the FCI and MCCI energy, at all
geometries considered, ranged from around 8.4 kcal/mol to
33.8 kcal/mol while this range was around 1.1 kcal/mol to
4.5 kcal/mol when the cutoff was lowered to cmin = 5 × 10−4.

We have seen, for the three systems considered for hy-
drogen dissociation, that by going to a low enough coefficient
cut-off value of cmin = 5 × 10−4 we can reproduce the shape
of the potential curve to relatively high accuracy: we achieve
a non-parallelity error of around a few kcal/mol which is bet-
ter than the single-reference methods we compare with from
the literature. This is accomplished using in the order of hun-
dredths of a percent of the full CI space. The accuracy was
also higher than many of the multireference results from the
literature. Some CASPT2 and SOCI calculations, using large
active spaces or chemical intuition in the construction of a
smaller active space, produced a lower non-parallelity error
but the number of states used for these calculations was not
reported for comparison.

B. Carbon dimer

Next we look at the dissociation of C2 in a 6-31G*
basis with two frozen orbitals. This system is known to be
multireference and possess low-lying excited states hence
poses a stern test of MCCI. Preliminary MCCI results for C2

are contained in Ref. 1. FCI results22 and the MCCI potential
curve with cmin = 5 × 10−3 are shown in Fig. 8. The MCCI
curve accuracy is somewhat difficult to judge by eye due to
the many close excited states, but it appears to follow the
FCI ground state closely except for bond lengths (R) around
3 Å where it seems that a low lying excited state (B’) has been
converged upon instead. However, it appears that the three
FCI curves are in fact tending to a degenerate state as the sys-
tem dissociates. In addition, the lowest energy state between
about 1.7 and 2.5 Å is B rather than X and MCCI may have
converged to this as would be expected: the states have differ-

FIG. 8. MCCI (cmin = 5 × 10−4) and FCI22 results for energy (Hartree)
against the bond length R (angstrom) for C2 using the 6-31G* basis set with
two frozen core orbitals. Here X and B’ are 1�+

g and B is 1�g. Adapted from
Ref. 1.

ent symmetry so can cross but have the same spatial symmetry
in the abelian subgroup (D2h) used for computation.

The mean number of CSFs employed was ∼6900
for MCCI here, while FCI results from Ref. 22 required
52 407 353 symmetry-adapted Slater determinants. This gives
a ratio of 0.013%. The NPE is 4.9 kcal/mol for MCCI here
which is substantially better than methods based on a single
reference. From Ref. 22, CCSD had a NPE of 24.3 kcal/mol
and that of CCSD(T) was 61.3 kcal/mol, highlighting the
instability of coupled cluster at large R. Unrestricted methods
behaved better at dissociation but were less good at inter-
mediate bond lengths resulting in a NPE for UCCSD(T) of
21.6 kcal/mol. CISDTQ gave a curve with 16.6 kcal/mol for
the NPE. It is worth noting that a CISDTQ, without sym-
metry, and using Slater determinants would be expected to
have around 3 × 106 terms. Even allowing for the reduction
in the size of the space through spatial symmetry and the use
of CSFs, the MCCI result with ∼6900 CSFs on average and
a better NPE shows the usefulness of the MCCI approach
here. Valence active space CASSCF in Ref. 23 used 660 de-
terminants and had a NPE of 5.4 kcal/mol for (SA)-CASSCF.
(EOM)CCSD gave 24.3 kcal/mol and CR-(EOM)CCSD(T),
III gave 13.5 kcal/mol for the NPE. CISD[TQ] had a NPE of
16 kcal/mol in that work and used 87 415 determinants. In
fact only two of the multireference techniques investigated
in Ref. 23 had a lower NPE: (SA)-CASSCF MRCI with
0.4 kcal/mol using 270 338 determinants and SA-CASPT2
with a NPE of 3.8 kcal/mol.

A wavefunction for the carbon dimer found using FCI
quantum Monte Carlo (FCIQMC) in Slater determinant
space in Ref. 24 required 9.15 × 106 walkers at 0.9 Å in this
6-31G* basis to give almost FCI results although the point at
R = 3 Å was neglected. We note that with a cc-pVDZ basis
and requiring that only states with zero angular momentum
were allowed they calculated very similar results to MRCI,
and with lower energy for R > 1.15 Å than when using
6-31G*, with 2 × 106 walkers compared with a standard FCI
space of 4.74 × 109 Slater determinants. This suggests that
the performance of MCCI here could perhaps be improved
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FIG. 9. MCCI (cmin = 5 × 10−4) energy error (Hartree) when compared
with FCI22 results against the bond length R (angstrom) for C2 using the
6-31G* basis set with two frozen core orbitals. The NPE is 4.9 kcal/mol.

if we also discriminate between states using their angular
momentum in addition to their symmetry and spin.

We note that MCCI potential curve for the carbon dimer
is of slightly higher accuracy, in a sense, than its constituent
single-point energy calculations as the mean single-point er-
ror was around 6.0 kcal/mol. In addition, if we exclude the
two points around R = 3 Å, that seem to have converged to
a low-lying excited state, then the single point energy error
only reduces a little to 5.7 kcal/mol but the NPE is now just
2.7 kcal/mol. In Fig. 9, we see that the error does not vary too
much, as summarised by the NPE, but is highest approach-
ing the largest bond length. Interestingly it is lowest not at
equilibrium but at bond lengths from around 1.8 Å to 2 Å,
which in this case may be due to the lowest energy state be-
ing reached, not the original ground-state. This slightly lowers
the mean single-point error in this case, and will slightly raise
the NPE. At 3 Å, we compare the MCCI energy for the full
system with that of the sum of the MCCI energies of the frag-
ments and find a difference of 3.2 kcal/mol. We note that as
the energy of the system using MCCI is higher than the en-
ergy of the fragments here then as the system has perhaps not
sufficiently dissociated the difference is perhaps smaller than
if a larger R had been considered.

1. Analysis of the C2 MCCI wavefunction

At the equilibrium geometry for C2 the MCCI wave-
function has states with as many as 7 substitutions from the
Hartree-Fock reference and the multiconfigurational nature
is evident from the largest ten coefficients of the CSFs in
Table II. By R = 2.0 Å, the dominant configuration is now a
double substitution of the Hartree-Fock reference which could
suggest that the lowest lying state here (B), not the equilib-
rium ground-state curve (X), may have been converged upon
as expected or could just be an aspect of the multiconfigura-
tional nature which is is more apparent here: the largest two
coefficients are −0.636 and 0.557. By R = 3.0 Å, the largest
coefficient belongs to a CSF which differs to the major con-
tributor in the previous two cases. This may be linked to the

TABLE II. Ten largest coefficients of the C2 MCCI wavefunction at
R = 1.25 Å with the number of substitutions with respect to the Hartree-Fock
reference listed by spin.

Coefficient α substitutions β substitutions

−0.830 0 0
0.331 1 1
−0.184 1 1
−0.180 1 1
−0.179 1 1
−0.160 0 2
0.158 1 1
0.158 1 1
−0.142 0 1
0.106 2 2

suggestion from the potential curves that here a different ex-
cited state is converged upon at large R.

C. F2

In Fig. 10, we now display the MCCI potential curve for
F2 in a cc-pVDZ basis set without any frozen orbitals. The
MCCI results can be seen to follow the shape of the full va-
lence CI results of Ref. 25 despite the MCCI calculation not
freezing any orbitals. We can also see how the Hartree-Fock
energy increases much too rapidly as the bond length becomes
large.

We note that the MCCI with cmin = 5 × 10−4 required
around 3 577 CSFs on average for the depicted points. The
FCI space with two frozen orbitals would be expected to com-
prise 4.3 × 1011. Even though only a very small fraction of
this space is used (8.3 × 10−7), when compared with the full
valence CI points the NPE for MCCI is 6.2 kcal/mol.

In Fig. 11, we display the difference between the MCCI
and Full valence CI for the latter’s points in the range dis-
played in Fig. 10. Here the MCCI error tends to decrease with
increasing bond length for the points displayed. Comparing
the MCCI energy of the system at R = 3 Å with the sum of

FIG. 10. MCCI (two frozen orbitals) with cmin = 5 × 10−4, Full valence
CI25 and Hartree-Fock results for energy (Hartree) against bond length R
(angstrom) for F2 using the cc-pVDZ basis set.
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FIG. 11. Energy error of MCCI (two frozen orbitals) with cmin = 5 × 10−4

when compared with Full valence CI25 against bond length R (angstrom) for
F2 using the cc-pVDZ basis set. The NPE is 6.2 kcal/mol.

the MCCI energies of the constituent atoms, we find a differ-
ence of 7.3 kcal/mol.

D. N2

The nitrogen molecule is well known for exhibiting mul-
tireference character at long bond lengths and here methods
based on a single reference can fail, see, e.g., Ref. 26. Hence
this is another challenging system to test if MCCI can pro-
duce a potential energy curve with balanced error. The MCCI
potential curve for a cc-pVDZ basis with two frozen core or-
bitals is displayed in Fig. 12 and compared with FCI results
from a number of sources.27–29 We see that the general shape
of the curve is recovered by MCCI when using a cut-off of
cmin = 10−3 and the gap appears fairly constant except at very
small bond lengths. For the values for which FCI results could
be found, depicted in Fig. 12, the NPE is 6.6 kcal/mol, while
the MCCI CSFs ranged from about a thousand to almost five
thousand as the bond length increased with a mean value of
2 854. This is in contrast to a SD space of 4.3 × 109 for a

FIG. 12. MCCI (cmin = 10−3) and FCI27–29 energy (Hartree) against bond
length R (angstrom) for N2 using the cc-pVDZ basis set with two frozen
cores.

FCI when ignoring spatial symmetries. The 200 iterations re-
quired from around 3 min at small R to 1.3 h as R became
large using 8 processors.

For the six bond lengths considered in Ref. 29 for this
system using the DMRG, the NPE in mEh ranged from 0.4
to 0.01 for DMRG1000 and DMRG4000, respectively, while
CCSD(T) was 172.724 and CCSD 57.754. Using a CAS(6,
6) wavefunction as a reference, MRCI and MRCC had 0.464
and 0.732 mEh respectively, but the number of states used was
not specified. While the results of our MCCI calculation with
cmin = 10−3 gave 5.37mEh but using only a few thousand
CSFs on average. The variational parameters of DMRG allow
a rough comparison with the size of the space. The number
of parameters is known to be O(M2k) (see for example
Ref. 30) and so for the 26 non-frozen orbitals used there
are of the order of 26 × 106 parameters for DMRG1000 (M
= 1000). Reference 31 uses the same set of points to compare
the accuracy of multireference coupled cluster approaches,
again with a CAS(6, 6) reference. For state-specific multiref-
erence CCSD (SS-MRCCSD) with delocalised orbitals they
find a NPE of 12.0 mEh, single-root MR Brillouin-Wigner
CCSD (srMRBWCCSD) had a NPE of 19.4 mEh, and MR
averaged quadratic CC MRAQCC gave 1.1 mEh.

In Ref. 21, the 13 points of Ref. 27 are used. Over
these points we calculate the MCCI NPE as 5.9 kcal/mol.
The CASSCF(10, 10) “1:1 active space” calculation21 had
the highest NPE at 22.93 kcal/mol of the methods they con-
sidered for this system, while the CASSCF(10, 8) “valence
active space” result had a NPE of 15.03 kcal/mol. Using
their minimal active space, defined with knowledge of which
bonds were broken, resulted in a CASSCF(6, 6) with a NPE
of 14.59 kcal/mol. Interestingly the CASPT2(6, 6) had the
largest NPE of the three active spaces considered for CASPT2
at 5.2 kcal/mol, unlike their results for HF and CH4, while
CASPT2(10, 10) had the smallest at 1.88 kcal/mol. The SOCI
were all below one kcal/mol but it was not clear how many
states were used to achieve this result. MCCI with the cut-off
employed is hence relatively close in accuracy to the CASPT2
results where knowledge of which bonds are broken has been
used and it appears that large active spaces for CASPT2 are
needed to reduce the NPE to below 2 kcal/mol.

In Fig. 13, we see that the difference between the MCCI
and FCI energy tends to increase with the bond length for the
nitrogen molecule.

We have also calculated a potential curve using a cc-
pVTZ basis. This is displayed in Fig. 14 and shows how
the dissociation is again well-behaved for this larger range
of points. Without symmetry considerations the FCI space is
around 1017 SDs while the mean number of CSFs required
for the MCCI curve was around 4 600 at cmin = 10−3 and
around 10 600 at cmin = 5 × 10−4. The very large space pre-
cludes a comparative FCI calculation. However we may make
an approximate comparison with FCI results32 which used
an ANO[4s3p1d] basis with two frozen cores. The difference
in energy between the MCCI results at the equilibrium bond
length of 1.098 Å and at 4 Å is 0.381 Hartree at the smallest
cut-off used. This compares reasonably well with the approx-
imate dissociation energy FCI results of Ref. 32. There an
approximate equilibrium bond length of 2.1 Bohr was used to
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FIG. 13. Error (Hartree) in the MCCI (cmin = 10−3) calculation when com-
pared with the FCI against bond length R (angstrom) for N2 using the
cc-pVDZ basis set with two frozen cores. The NPE is 6.6 kcal/mol.

give 0.321 Hartree and 40 Bohr was used to calculate the en-
ergy at dissociation. When comparing the MCCI energy of the
system at R = 4 Å with the sum of the MCCI energies of the
appropriate fragments we find a difference of 56.8 kcal/mol
when using cmin = 10−3 and a difference of 41.8 kcal/mol
when using cmin = 5 × 10−4. This suggests that the atoms are
treated more accurately when using MCCI with HF MOs on
this multireference system with a basis that is beyond current
FCI. However, we note that the curve appears to dissociate
correctly even with the largest difference seen in this work
between the molecule essentially at dissociation and the frag-
ments suggesting that MCCI is the least size-consistent in this
case.

To give a somewhat fairer comparison with the FCI re-
sults of Ref. 32 we remove the f orbitals from a cc-pVTZ
basis, and attempt to use the same geometries as Ref. 32,
but keep the MCCI cut-off value the same and do not freeze
any core orbitals. For R = 2.1 Bohr, we find an energy of
−109.296 Hartree using 12 664 CSFs, but the MCCI results
were much too high in energy at R = 40 Bohr (−93.66 Hartree

FIG. 14. MCCI energy (Hartree) against bond length R (angstrom) for N2
using the cc-pVTZ basis set with a cut-off of cmin = 10−3 or cmin = 5
× 10−4. Inset: Energy difference between the MCCI results using the two
cut-offs.

using 5, 029 CSFs) which we attribute to the restricted
Hartree-Fock (RHF) reference being qualitatively wrong. The
amount of states needed to compensate for this and produce
a sensible MCCI energy using the RHF molecular orbitals
is then perhaps much too large for the cut-off employed.
However, we saw that when using a full cc-pVTZ basis the
potential curve dissociated as one would expect in Fig. 14
when the largest bond length was 4 Å. Hence we note that
the problems resulting in a very poor reference at extremely
large bond length could be circumvented, to a degree, by
calculating the curve until approximate convergence toward
the energy as dissociation where the smaller bond distance
means that RHF is not quite as incorrect. To this end we use
R = 7.56 Bohr (4 Å) and find the energy to be −108.959 with
19 156 CSFs. This gives an approximate dissociation energy
of 0.337 Hartree. The MCCI result therefore has an approxi-
mate error of around 10 kcal/mol. The symmetry adapted FCI
space was around 9.68 × 109 while the mean number of CSFs
used by MCCI for the two points was 15 910. Hence here only
around 1.6 × 10−4% of the FCI symmetry adapted space was
used.

E. BeH2

The model reaction for the formation of BeH2 was put
forward in Ref. 33 to investigate CCSD. There CCSD was
found to describe the system well even when the system had
multireference character with two states. Recently, BeH2 has
been considered as a test system for internally contracted mul-
tireference coupled cluster (ic-MRCC).34 In the aforemen-
tioned work the beryllium atom is at the origin and the hydro-
gen atoms have, in Bohr, the coordinates x, y and x, −y where
y = 2.54 − 0.46x and x ∈ [0, 4]. We run the calculations with
no frozen orbitals and note that the full CI space is around
4 × 106 SDs when neglecting spatial symmetries, while
the MCCI wavefunction with cmin = 10−3 consisted of CSFs
ranging from 386 at x = 0 to a maximum of 1002 around the
transition state at x = 2.8 with a mean value of 628. Full CI
results were calculated using MOLPRO.17, 35, 36 We see that the
match between the MCCI and the FCI is both qualitatively
correct and quantitatively appears very good in sharp contrast
to the incorrect behaviour of Hartree-Fock here (Fig. 15). The
good match of the MCCI with the FCI is shown in the NPE
value of 0.628 kcal/mol despite the wavefunction only being
a few-hundredths of a percent of the size of the FCI SD space.
We note that in Ref. 34 the NPE, when using a slightly differ-
ent basis set, was found to be 0.653 kcal/mol for ic-MRCCSD.

We see in Fig. 16 that the difference between the FCI and
MCCI energy is smallest at x = 4 Bohr and increases as the
reactants approach (x decreases) until about x = 2 Bohr from
then on it decreases as x decreases. We note that the maximum
error does not correspond to the transition state.

F. Ammonia inversion

We investigate the ability of MCCI to reproduce the po-
tential curve of NH3 as its trigonal pyramid inverts by mov-
ing through a planar structure. We use the cc-pVDZ basis and
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FIG. 15. MCCI (cmin = 10−3), FCI and Hartree-Fock energy (Hartree)
against the reaction coordinate x (Bohr) for BeH2 using the cc-pVDZ basis.

freeze one orbital. The NH bond length is 1.025 Å and the
hydrogens are at 120◦ to each other. The NH bond makes an
angle θ with a line passing through the nitrogen and perpen-
dicular to the hydrogen plane.

The MCCI curve is displayed in Fig. 17 and compared
with Hartree-Fock and FCI results which were calculated us-
ing MOLPRO.17, 35, 36 The plot is mirrored around the line x =
90. We see that both MCCI with cmin = 10−3 and Hartree-
Fock recover the shape of the FCI curve with the minima and
transition point in approximately the correct place. The MCCI
curve appears to be a little too flat as it approaches the planar
structure in that the energy does not change as much as the
FCI or Hartree-Fock between 85◦ and 90◦. Despite this, for
the 11 points from 40◦ to 90◦, the NPE is 2.4 kcal/mol while
Hartree-Fock has a NPE of 9.9 kcal/mol. The number of CSFs
ranged from 1226 to 1824 with a mean value of 1629. This is
in contrast to the size of the FCI SD space when neglecting
symmetry of ∼4 × 108.

The difference in energy between the MCCI and FCI cal-
culation is displayed in Fig. 18. For this system we see that
the error generally decreases as the planar transition state is
approached.

FIG. 16. Error (Hartree) in the MCCI (cmin = 10−3) energy compared with
FCI against the reaction coordinate x (Bohr) for BeH2 using the cc-pVDZ
basis. The NPE is 0.63 kcal/mol.

FIG. 17. MCCI (cmin = 10−3), FCI, and Hartree-Fock energy (Hartree)
against angle (θ ) for NH3 using the cc-pVDZ basis and one frozen core
orbital.

G. Hydrogen lattice

We now consider a linear chain of hydrogen atoms.
Such a system would perhaps be expected to be more suit-
able for modelling using techniques appropriate for strongly-
correlated one-dimensional lattice systems such as DMRG14

methods which can in principle scale linearly with the size
of the system; a linear 50 hydrogen system has been consid-
ered using the DMRG for quantum chemistry in Ref. 37 with
a STO-6G basis. The 1D hydrogen chain therefore poses an
interesting challenge for MCCI particularly as the correlation
progresses from dynamic to a large amount of, what could
be considered, static correlation as the distances between the
atoms increase: the FCI results using MOLPRO17, 35, 36 for a
chain of 12 hydrogens in the STO-6G basis have only two co-
efficients greater than 0.05 ( −0.110 and 0.981) at 1.0 Bohr
separation compared with 19 at 4.2 Bohr where the largest is
only 0.22.

In Fig. 19, we see that for a chain of 12 hydrogens the
Hartree-Fock energy increases much too fast as the distance
between hydrogen atoms increases. MCCI, with cmin = 10−3,

FIG. 18. Error (Hartree) in the MCCI (cmin = 10−3) energy when compared
with the FCI against angle (θ ) for NH3 using the cc-pVDZ basis and one
frozen core orbital. The NPE is 2.4 kcal/mol.
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FIG. 19. MCCI (cmin = 10−3), FCI, and Hartree-Fock energy (Hartree)
against distance between atoms R (Bohr) for a chain of 12 hydrogen atoms
with a STO-6G basis.

is a fairly good match with the FCI results. We note that there
was a numerical issue with the MCCI results for R > 3.2 Bohr
when using MOs. Here MCCI produced an energy slightly
lower than the FCI energy. However, when using orthogonal
atomic orbitals we found a MCCI energy of −5.694 Hartree at
4.2 Bohr compared with the FCI result of −5.699 Hartree,
this seemed to suggest that the use of very poor MOs in
MCCI for this challenging system can lead to numerical
problems when using CSFs in MCCI. The full configuration
space consists of 853 776 determinants while the MCCI
wavefunction ranged from 342 at R = 1 Bohr to a maximum
of 6477 by R = 2.8 Bohr. The mean value was 2701 CSFs.
The NPE for the displayed results was 15.8 kcal/mol. In Fig.
20, we display the difference between the MCCI and FCI
energies. We see that the MCCI energy error increases from
its value at R = 1 Bohr until R = 2.8 Bohr.

We did not satisfactorily calculate a potential curve
(Fig. 21) for the 50 hydrogen system compared with DMRG
based results of Ref. 37 which we suggest as due to the ex-
tremely large configuration space (1028) of which we only
included up to ∼80 000 states (∼10−21% of the full space)

FIG. 20. Error (Hartree) in the MCCI (cmin = 10−3) energy compared with
the FCI against distance between atoms R (Bohr) for a chain of 12 hydrogen
atoms with a STO-6G basis. The NPE is 15.8 kcal/mol.

FIG. 21. MCCI (cmin = 5 × 10−4), Hartree-Fock, LDMRG(500) (see
Ref. 37), and MCCI (cmin = 5 × 10−4) using orthogonal atomic orbitals
(AOs). Energies (Hartree) against distance between atoms R (Bohr) for a
chain of 50 hydrogen atoms when using a STO-6G basis.

which even assuming that the fraction of states needed for an
accurate potential curve decreases with the size of the space
still appears to be much too small a sample. We note that the
DMRG results used localized orbitals while the MCCI po-
tential curve used HF MOs. We can see in Fig. 21 that the
MCCI curve not only improves upon that of Hartree-Fock in
this basis and retains the correct equilibrium bond length but
also still displays incorrect behaviour at large R. This suggests
that it does not sufficiently account for the static correlation
for this system at the value of cmin used (5 × 10−3). We note
that the MCCI and Hartree-Fock curve for R � 1.8 Bohr ap-
pear to have moderately good agreement with the DMRG re-
sults which may be expected as the correlation is essentially
dynamic here.

As R becomes larger we would expect the system to be
closer to a collection of non-interacting hydrogen atoms so the
atomic orbitals might be expected to be a more efficient basis
than the restricted Hartree-Fock molecular orbitals. We cre-
ate orthogonal atomic orbitals using the Gram-Schmidt pro-
cedure starting with the leftmost atomic orbital. The use of
CSFs allow us to put one electron in each atomic orbital and
still have a correct S = 0 spin function. At R = 4.2 Bohr, we
find that we have an energy which is 0.4 Hartree above the
DMRG result, but the MCCI program does not seem able to
easily improve upon this single CSF as no other configura-
tions are then found. Such an approach would not work well
for slightly smaller R where both dynamic and static corre-
lation is important—for R = 3.2 Bohr this approach yields a
difference of 1.2 Hartree—and suggests that a larger fraction
of the configuration space would need to be explored and that
approximate natural orbitals could be useful.

H. Ethylene torsional angle

We now look at ethylene for which we use RC−C

= 1.325 Å, RC−H = 1.090 Å, and � HCC = 120.252◦.
Using a cc-pVDZ basis with cmin = 10−3 and vary the
torsional angle. We find the torsional barrier in ethylene to be
75.52 kcal/mol which compares relatively favourably with the
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FIG. 22. Energy against torsional angle (degrees) for ethylene with a
cc-pVDZ basis and cmin = 10−3.

cc-pVDZ results from Ref. 38. There the barrier was found to
be 68.2 kcal/mol when using CASSCF(12,12) while CASPT2
lowered this to 65.5 kcal/mol. The Hartree-Fock barrier was
as high as 111.8 kcal/mol. We note that it is not clear whether
exactly the same geometry was used and also whether it was
kept fixed, as in our results, or made more realistic by being
allowed to relax at 90◦ in the quoted literature values (i.e.,
fully geometry optimizing the transition state structure).

The number of CSFs increased from around 5900 to
about 11 200 as the torsional angle increased to 90◦. The mean
number of CSFs was 8250 which is 8.3 × 10−12% of the size
of the 1017 SD FCI space when neglecting possible spatial
symmetries. In Fig. 22, the results have been mirrored about
the line x = 90. The lack of a cusp at 90◦ when using mul-
tireference perturbation but its occurrence when using single
reference methods such as CCSD was noted in Ref. 39 and
we see here that a cusp appears to be avoided as the gradient
of the MCCI curve decreases as it approaches 90◦.

IV. SUMMARY

We have seen that potential energy curves for small sys-
tems may be calculated by MCCI to approaching chemical
accuracy, when compared with full configuration interaction
results, even when the system is known to be multiconfig-
urational. Table III shows how NPE values of often around
a few kcal/mol can be achieved using MCCI to construct a
wavefunction that uses only a very small percentage of the
size of the FCI space. For all the systems but BH, which
has fairly similar NPE and mean single-point energy error,
and the chain of 12 hydrogens, which had the largest fraction
of states but worst NPE, we achieved a better NPE than the
mean single point error demonstrating that MCCI can indeed
be used for calculating a potential curve to higher accuracy
than its constituent single-point energies. We note that in gen-
eral for a fixed cmin > 0 MCCI would not be expected to be
size-consistent nor size-extensive, but the potential curves cal-
culated here suggest, that for a low enough cmin, MCCI is suf-
ficiently size-consistent to correctly describe the approach to
dissociation of many of the systems considered in this work.
Quantifying the size-consistency by comparing the MCCI en-

TABLE III. Table showing the mean CSFs to FCI SDs (without symmetry
considerations) ratio, mean CSFs to FCI CSFs (without symmetry consider-
ations), non parallelity error (NPE) (kcal/mol) and mean single-point error
(MSPE) (kcal/mol), at the smallest cut-off used, for the systems investigated
for which FCI results were available.

System % FCI SD space % FCI CSF space NPE MSPE

BH 0.007% 0.021% 2.6 2.1
HF 0.014% 0.056% 1.3 2.6
CH4 0.012% 0.049% 0.6 4.1
C2 0.003% 0.013% 4.9 6.0
F2 8.3 × 10−7% 4.9 × 10−6% 6.2 9.0
N2 6.6 × 10−5% 3.2 × 10−4% 6.6 11.9
H12 0.32% 1.2% 15.8 6.0
BeH2 0.016 % 0.052% 0.63 0.94
NH3 4 × 10−4% 1.7 × 10−3% 2.4 8.4

ergy at the largest bond length and lowest cut-off used with
the sum of the MCCI energy of the fragments reveals a dif-
ference of less than 10 kcal/mol for most of the systems con-
sidered and less than 1 kcal/mol for those undergoing a single
hydrogen dissociation; however, N2 in a cc-pVTZ basis had a
difference of 41.8 kcal/mol.

We note that as the space became larger the fraction used
tended to decrease, for example, the results for the nitrogen
and fluorine molecules in Table III, which we would hope
may be a general feature. We acknowledge that the NPE was
larger for the nitrogen and fluorine molecules when the space
became larger but comparing, e.g., nitrogen with BH we see
that the NPE is only around 2.5 times larger but the fraction
of the space is around 100 times smaller while the reduction
in the space is even more pronounced for fluorine and the in-
crease in NPE a little smaller. We note that the NH3 FCI has
more than six times the states of BH but MCCI uses a fraction
around 100 times smaller to give a slightly lower NPE. We
also saw that nitrogen in a cc-pVDZ basis used 2854 on aver-
age of a possible 109 states while in a cc-pVTZ basis without
frozen orbitals we could produce a well-behaved curve using
just 10 600 states, at the smallest cut-off considered, of the
much larger 1017 FCI space, although a NPE value was not
available in the latter case. We acknowledge that a fixed value
of cmin restricts the size of the MCCI space so that the max-
imum fraction possible must decrease as the FCI space en-
larges. However, our MCCI results are well within this limit
and we note that the number of MCCI states appears to in-
crease much more slowly than the FCI space.

However, even with the possibility of a decrease in the
fraction of the FCI space required as the system became very
much larger, we found that a chain of 50 hydrogens was to
prove too challenging for MCCI. Here we saw that although
the equilibrium geometry was correct this was not an im-
provement on the Hartree-Fock results and for longer bond
lengths, where static correlation would be considered impor-
tant, the curve, although lower in energy than that of Hartree-
Fock, increased too quickly. We suggest that this is due to the
very large size of the configuration space (∼1029) and the very
challenging system for standard quantum chemistry methods
partly due to its strongly correlated nature: restricted Hartree-
Fock is a very poor approximation at large bond lengths here



194111-12 Coe, Taylor, and Paterson J. Chem. Phys. 137, 194111 (2012)

and H12 required the largest fraction of the FCI space and
gave the largest NPE. We note that as a single CSF using or-
thogonalised atomic orbitals was much closer to the DMRG
energy here then the results could perhaps be improved by
the use of approximate natural orbitals and allowing the al-
gorithm to explore more of this space but this strongly cor-
related system may still require many states and seems to be
more amenable to modelling using other methods. Finally, the
potential curve for the isomerisation of ethylene was found
to be relatively smooth and the calculated barrier compared
fairly favourably with other computational results. Although
we calculated potential surfaces, for which FCI results exist,
to relatively high accuracy using just a very small fraction
of the FCI space, we have noted two possible limitations of
MCCI when applied to potential energy surfaces. The first is
that when the cut-off is not sufficiently small a potential curve
may not be smooth due to the stochastic nature of the algo-
rithm. However, we were able to produce smooth curves with
reasonable cut-offs that resulted in only a very small frac-
tion of the FCI space being used. The second limitation is
when many states of a large FCI space are required due to a
combination of the reference being very qualitatively wrong
and the system being considered strongly correlated, e.g., in
the case of restricted Hartree-Fock used with N2 at extremely
large bond lengths or H50 at moderately large bond lengths,
then not enough states at a feasible cut-off can be included
to compensate for the poor choice of molecular orbitals. For
N2 it seemed that this could be remedied to some degree by
considering a smaller bond length where the system had al-
most converged to the energy at dissociation. However, this
was not possible for H50 so we suggested that different or-
bitals, perhaps approximate natural orbitals, might be used to
try and improve the description at bond lengths away from
the equilibrium geometry. To have a better chance of work-
ing well with extremely large FCI spaces we also suggest that
MCCI could perhaps be used with a relatively large cut-off
to find a good starting point for multireference perturbation
theory.
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