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Monte Carlo Configuration Interaction Applied to
Multipole Moments, Ionization Energies, and Electron
Affinities

Jeremy P. Coe, Daniel J. Taylor, and Martin J. Paterson*

The method of Monte Carlo configuration interaction (MCCI)

(Greer, J. Chem. Phys. 1995a, 103, 1821; Tong, Nolan, Cheng,

and Greer, Comp. Phys. Comm. 2000, 142, 132) is applied to

the calculation of multipole moments. We look at the ground

and excited state dipole moments in carbon monoxide. We

then consider the dipole of NO, the quadrupole of N2 and of

BH. An octupole of methane is also calculated. We consider

experimental geometries and also stretched bonds. We show

that these nonvariational quantities may be found to relatively

good accuracy when compared with full configuration

interaction results, yet using only a small fraction of the full

configuration interaction space. MCCI results in the aug-cc-

pVDZ basis are seen to generally have reasonably good

agreement with experiment. We also investigate the

performance of MCCI when applied to ionisation energies and

electron affinities of atoms in an aug-cc-pVQZ basis. We

compare the MCCI results with full configuration interaction

quantum Monte Carlo (Booth and Alavi, J. Chem. Phys. 2010,

132, 174104; Cleland, Booth, and Alavi, J. Chem. Phys. 2011,

134, 024112) and ‘‘exact’’ nonrelativistic results (Booth and

Alavi, J. Chem. Phys. 2010, 132, 174104; Cleland, Booth, and

Alavi, J. Chem. Phys. 2011, 134, 024112). We show that MCCI

could be a useful alternative for the calculation of atomic

ionisation energies however electron affinities appear much

more challenging for MCCI. Due to the small magnitude of the

electron affinities their percentage errors can be high, but

with regards to absolute errors MCCI performs similarly for

ionisation energies and electron affinities. VC 2013 Wiley

Periodicals, Inc.

DOI: 10.1002/jcc.23211

Introduction

Monte Carlo configuration interaction (MCCI), created by the

group of J. C. Greer,[1,2] attempts to produce a compact wave-

function that can be close in accuracy to the full configuration

interaction (FCI). This procedure exploits the observation that,

in many systems, numerous states in an FCI contribute almost

nothing to the wavefunction. In this general approach it is not

alone: a number of methods have been proposed which often

essentially aim to discover the states necessary for a good

description of the system without performing an FCI, see, for

example, Ref. [3] for a review. MCCI offers the possibility of

recovering much of the static and dynamic correlation using

only a very small fraction of the configurations required for an

FCI with minimal user input and, in principle, no inherent diffi-

culties when treating excited states or multireference systems.

To achieve this is an iterative process of a configuration inter-

action (CI) calculation within a sample of coupled configura-

tions followed by a stochastic augmentation of the sample at

each step is used. Here, configurations whose coefficient has

an absolute value less than a user-specified value (cmin) in the

MCCI wavefunction are eventually removed from it.

Previous work by Greer et al. has shown that single-point

energies,[1] and bond dissociation energies[4] for hydrogen flu-

oride and water, can be satisfactorily computed using this

method. Electronic excitation energies for atoms have been

computed using MCCI,[5] where it was found, when using an

aug-cc-pVTZ basis with additional Rydberg functions, that the

errors tended to be relatively small compared with experiment

as were the fractions of states needed compared with an FCI.

More recently, Gy€orffy et al.[6] showed that electronic excita-

tion energies for molecules could be calculated with errors of

only around tens of meV for molecules such as nitrogen and

water. Here, the MCCI wavefunctions comprised from a few

thousand to around 12,000 configuration state functions

(CSFs) compared with FCI spaces of circa 108. The MCCI

method has also been applied to ground-state potential

curves in Ref. [7]. There it was generally found to be able to

produce sufficiently accurate potential energy surfaces for

small molecules, even in multireference situations, using a tiny

fraction of the FCI space.

As this version of MCCI uses the magnitude of a state’s coef-

ficient in the wavefunction as the criterion for inclusion rather

than a state’s energy contribution, we expect that properties

of the exact wavefunction other than the energy should also

be approximated sufficiently accurately by an MCCI wavefunc-

tion using a very small fraction of the states required for a full

CI. Here, we test this idea on nonvariational properties of the
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system: multipole moments. We calculate dipole moments for

ground and excited states in carbon monoxide and the

ground-state dipole moment in NO which are compared with

FCI and experimental results. The quadrupole moment is

calculated for N2 and compared with experimental and FCI

results. FCI results for the quadrupole of BH and an octupole

of methane are also compared with MCCI results. In addition

to equilibrium geometries, we also consider structures where

the system may be expected to be multireference and stand-

ard methods may not work well. The possible ability of MCCI

to produce accurate enough multipoles at a range of geome-

tries could be useful for the construction of multipole surfaces.

Finally, we also consider the performance of the MCCI algo-

rithm when applied to ionisation energies and electron affin-

ities of atoms which we compare with FCI quantum Monte

Carlo (FCIQMC)[8,9] and ‘‘exact’’ nonrelativistic results.

Methodology

We give a short recap of the MCCI method.[1,2] MCCI stochasti-

cally adds coupled configurations to a wavefunction

WMCCIj i ¼
P

i ci wij i, so that the important configurations can

eventually be found regardless of their substitution level, in

contrast to traditional truncation methods such as configura-

tion interaction singles doubles (CISD), as there is no fixed ref-

erence state for MCCI. CSFs rather than Slater determinants

(SDs) are used thereby ensuring that the MCCI wavefunction is

an eigenfunction of Ŝ2 and producing a wavefunction with

fewer states. However, the construction of linearly independ-

ent CSFs and the Hamiltonian matrix when using CSFs is more

computationally demanding. An outline of the MCCI algorithm

is below:

1. Randomly augment the current MCCI wavefunction with

single and double substitutions.

2. Construct the Hamiltonian matrix and diagonalize.
3. Remove new states whose coefficient is lower in magni-

tude than cmin (pruning).

4. Every 10 iterations remove all states with coefficients

lower in magnitude than cmin (full pruning).

5. Return to Step 1.

We note that current states with coefficient greater than a

certain value will always have single or double substitutions

attempted from them while other states have a 50% chance of

this occurring. There is no augmentation or removal of states

on the last iteration, but on the penultimate iteration all states

with coefficients lower in magnitude than cmin are removed.

Furthermore, the program can run in parallel with newly dis-

covered and retained states broadcast to all other processors.

The states comprising the current MCCI wavefunction are

stored at each step thereby allowing a calculation to be

restarted using a previous wavefunction as the initial guess

but with a smaller cmin if necessary. This means that if the

accuracy is not sufficient at one cmin then the calculation can

be improved more efficiently than if it were just run again at a

lower cmin starting from the Hartree-Fock (HF) reference. We

attempt to run the MCCI calculation for enough time so that

the property of interest appears to have essentially converged

over a number of iterations. We acknowledge that due to the

random nature of the procedure there is always a small

chance that further iterations may produce a change in the

calculated property. The diagonalization using the Davidson

algorithm[10] is the rate limiting step when considering sys-

tems whose FCI space is large. The MCCI wavefunction is thus

currently restricted to a maximum of around 105 CSFs. For the

pruning step, we use wavefunction normalization. For the mul-

tipole calculations, this uses the coefficients after diagonaliza-

tion as in the original program.[2] For the ionisation energy

and electron affinity calculations, we try to give a more bal-

anced treatment of the atom and its ion by using the MCCI

pruning method of Ref. [6] to approximate an orthogonal CSF

basis.

We use a modified version of the MCCI program for the

results in this work. Occupied HF molecular orbitals are used

to construct the initial MCCI wavefunction and, unless other-

wise stated, all electrons are correlated. For the multipole

moment calculations, we generate the molecular orbital

integrals using the program Columbus,[11] whereas we use

MOLPRO[12] to calculate the molecular orbital integrals for the

ionisation and electron affinity results. For the FCI energy and

multipole calculations we use PSI3.[13]

Results

Dipole moment results

Carbon monoxide. The dipole moment in atomic units of a

linear molecule oriented along the z-axis may be calculated as

l ¼ �hWjẑ Wj i þ
X

i

ziQi: (1)

Here, Qi is the nuclear charge of atom i. The ground-state

dipole moment of carbon monoxide, although fairly small,

when calculated using HF strikingly has the incorrect sign

compared with experimental results. Previous work has sug-

gested that the accuracy of the dipole calculation depends on

the amount of correlation accounted for.[14] The bond length

(2.1316 Bohr) and the experimental dipole value (0.122 Debye)

are taken from Ref. [15]. The positive value for the dipole here

signifies a polarity of C�Oþ.

With a cc-pVDZ basis, two frozen core orbitals and a cut-off

value of cmin ¼ 5 � 10�3, we see in Figure 1 that the MCCI

method, starting from close to the incorrectly signed result of

the HF single SD, quickly reaches a correctly signed value

which converges at around half of the FCI value. The nonvaria-

tional nature can clearly be seen in Figure 1 as it is initially far

below its converged value then quickly overshoots it. This

value used only 833 CSFs compared with an FCI space, with

spatial symmetry considerations, of around 109 SDs.

We calculated the FCI energy (–113.05583 Hartree) and

dipole moment (0.23 D) using PSI3[13] for comparison and the

convergence of the MCCI energy towards these values is dis-

played in the inset and main part of Figure 1. We note that

we have only recovered 88% of the correlation energy when
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using cmin ¼ 5 � 10�3. When we increase the accuracy of the

correlation energy by lowering cmin, we can achieve 98.1% of

the correlation with around 4 � 104 CSFs when using cmin ¼ 3

� 10�4 (see Fig. 2). The periodic behaviour of the MCCI energy

at convergence is apparent in Figure 2, and this is due to the

full pruning step every 10 iterations causing a small increase

in the energy when a number of states are removed. New

states are then added and some kept. Although their addition

may have lowered the coefficients of some of the original

states so that they are now below the threshold for retention,

these original states are not checked for removal until the

next full pruning step. Hence, as the energy is variational it

lowers as more states are added until 10 iterations later when

all states are again considered for deletion. This periodic

behaviour is indicative of the energy calculation essentially

converging.

In Figure 3, we see that the dipole moment is also closer to

the FCI results as the cut-off value is reduced. In these calcula-

tions, the wavefunction from a previous, larger cut-off, compu-

tation has been used as the initial wavefunction and the pro-

cedure restarted.

In Figure 4, we display percentage errors when comparing

the MCCI results to those of the FCI. The dipole percentage

error is plotted against the correlation energy percentage error

for the three cut-off values considered (5 � 10�3, 5 � 10�4,

and 3 � 10�4), where a decreasing cut-off corresponds to a

decrease in the correlation energy error. Here, we see that

although the dipole error is somewhat larger it appears to

decrease with decreasing correlation energy error.

We note that the FCI dipole in cc-pVDZ basis has a large

percentage error compared with the experimental result

although the absolute error is only about 0.1 D. Diffuse func-

tions would be expected to be important for the correct calcu-

lation of multipoles as a better description of the wavefunc-

tion further away from the atom may be needed. Hence, we

also considered the aug-cc-pVDZ basis with no frozen orbitals.

In this case, the calculation is far beyond an FCI. The results

are depicted in Figure 5 and we find that a good agreement

with experiment is found as we reduce cmin to 3 � 10�4 to

give a dipole moment of 0.11 Debye. This used 55,913 CSFs

Figure 1. MCCI results with cmin ¼ 5 � 10�3 for the dipole moment

(e Bohr) against iteration number and FCI result for CO using the cc-pVDZ

basis set with two frozen core orbitals. Adapted from Ref. [3]. Inset: Energy

(Hartree) against iteration number.

Figure 2. MCCI and FCI energy (Hartree) against iteration number for CO

using the cc-pVDZ basis set with two frozen core orbitals.

Figure 3. MCCI results for the dipole moment (e Bohr) against iteration

number for CO using the cc-pVDZ basis set with two frozen core orbitals.

Adapted from Ref. [3].

Figure 4. MCCI percentage errors when compared with the FCI. Dipole

percentage error plotted against correlation energy percentage error for

CO using the cc-pVDZ basis set with two frozen core orbitals for three cmin

values (5 � 10�3, 5 � 10�4, and 3 � 10�4). Here, decreasing cmin corre-

sponds to decreasing correlation energy percentage error.
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compared with an FCI space, without spatial symmetry consid-

erations, of around 1015 SDs.

We acknowledge that other methods such as coupled-clus-

ter singles doubles (CCSD) will be more efficient to calculate

the dipole of this ground state at an equilibrium geometry.

For example, the CCSD nonrelaxed dipole can be calculated

very quickly for cc-pVDZ and gives 0.0996 e Bohr. However,

we now apply MCCI to a geometry, where CCSD performs

poorly and then excited states.

Stretched bond length. Carbon monoxide at a bond length of

R ¼ 4 Bohr was much more challenging for FCI and we note

that the RMS for the error in the CI vector was 3 � 10�2 in

PSI3,[13] when taken close to the limits possible with our hard-

ware, compared with a default requirement of 10�4. The CCSD

nonrelaxed dipole was calculated with MOLPRO[12] as �1.16 e

Bohr and we note that numerical derivatives using central dif-

ferences and a step size of 10�4 in field strength gave �1.17

for CCSD and �1.31 for CCSD(T). In Figure 6, we plot the

CCSD nonrelaxed dipole and the dipole calculated with FCI

and MCCI. We see that the MCCI calculation rapidly moves

towards the FCI result and the final MCCI wavefunction gives a

dipole that is difficult to distinguish from the FCI result on the

scale of the graph. The final MCCI wavefunction used 12,669

CSFs compared with the FCI space of around 109 SDs. The sys-

tem is strongly multireference here as the largest nine FCI

coefficients have absolute values between 0.24 and 0.30.

Methods based on a single-reference would be expected to

struggle here and we indeed observe this for CCSD and

CCSD(T). MCCI in principle has no inherent problems when

dealing with multireference systems and the result here sug-

gests that it can work well for the calculation of a multipole

moment, as well as the energy, for such a system.

Triplet state. We now consider the first triplet state 3P using

the experimental bond length of 2.278 Bohr.[16] We plot the

dipole moment versus iteration in Figure 7 and note that now

the dipole points in the opposite direction to the ground sin-

glet state and again the nonvariational nature is apparent. The

MCCI result, with cmin ¼ 10�3, is in fairly good agreement with

the FCI result and used 5447 CSFs compared with an FCI space

of 8.6 � 108 SDs.

The calculated dipole using MCCI with cmin ¼ 10�3 and an

aug-cc-pVDZ basis with no frozen cores gives �1.584 Debye

with 7047 CSFs and is in reasonable agreement with experi-

ment (�1.3740 Debye).[17] The agreement is better at a cut-off

of 5 � 10�4, where 14,771 CSFs gave �1.49 Debye. The FCI

space consists of around 1015 SDs without symmetry consider-

ations here so again the MCCI results are using a very small

fraction of the space.

Singlet excited states. For the first excited state 1P (ground-

state of B1 or B2 symmetry within C2v) in CO, we consider

MCCI compared with FCI results with the experimental bond

length of 2.334 Bohr as cited in Ref. [18]. In Figure 8, we see

that the MCCI dipole calculation quickly converges to a value

very close to the FCI on the scale of the graph. Here, 10,375

CSFs were required compared with �109 SDs in the FCI sym-

metry adapted space.

When using an aug-cc-pVDZ basis with cmin ¼ 10�3 and no

frozen cores, we find a dipole moment of �0.548 Debye at

the ground-state geometry using 16,487 CSFs compared with

Figure 5. MCCI results for the dipole moment (e Bohr) against iteration

number for CO when using the aug-cc-pVDZ basis set. Adapted from

Ref. [3].

Figure 6. MCCI, FCI, and CCSD results for the dipole moment (e Bohr)

against iteration number for CO using the cc-pVDZ basis set with two

frozen core orbitals at the stretched geometry of bond length R ¼ 4 Bohr.

Figure 7. MCCI results for the dipole moment (e Bohr) of the first triplet

state against iteration number for CO at 2.278 Bohr when using the

cc-pVDZ basis set with two frozen cores and cmin ¼ 10�3 compared with

the FCI result.
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�0.335 6 0.013 Debye from Ref. [19], whereas an earlier

study[20] found this to be �0.15 6 0.05 Debye. Here, the signs

of the experimental results have been determined by a theo-

retical study.[18] The result is closer to the later experiment

when cmin is lowered to 5 � 10�4 to give �0.418 with 45,274

CSFs.

We now consider the first excited state of A1 symmetry

within C2v (1Rþ) in CO and use the experimental bond length

cited in Ref. [18] of 2.116 Bohr. We see in Figure 9 that the first

excited state of A1 symmetry dipole calculation with the cc-

pVDZ basis quickly approaches its converged value after start-

ing with a too high but same signed value. The stable value is

close to the FCI result. We note that the calculation of this

excited state is not as stable in that oscillations occasionally

occur. The energy sometimes rises sharply after a full pruning

step here and this is accompanied by an increase then

decrease in the dipole before it returns to essentially its almost

converged value. It seems that sometimes states that are im-

portant for this system are removed during a full prune. The

energy appears to recover almost to its previous value in one

iteration, but it appears to take at least two iterations for the

dipole moment and its nonvariational nature is apparent. This

more sensitive behaviour to the removal of states may be con-

nected to the level of cut-off and the use of the second eigen-

value from the MCCI diagonalization routine. This used 8988

CSFs for the final MCCI wavefunction compared with the sym-

metry adapted FCI space of circa 109 SDs.

An experimental study[20] found this dipole to be 1.60 6

0.15 Debye, whereas a later work[19] found it to be 1.95 6

0.03 Debye. The sign was not determined in these experi-

ments but Ref. [18] found the dipole of this excited state to

be around �2.79 Debye at the ground-state geometry using

MCSCF and CIS with about 27,000 CSFs, whereas that of the

ground state was calculated as 0.32 Debye. When using an

aug-cc-pVDZ basis, we seem to find an essentially converged

value of 1.762 Debye with 22,198 CSFS when using cmin ¼
10�3. A value of 1.69 Debye with 71,857 CSFs was found using

cmin ¼ 5 � 10�4 but here the last value was an oscillation so

we used the second last iteration where all states were consid-

ered for removal. However, there were fewer oscillations when

using this basis. The values are reasonably near to the earlier

experimental work and become more similar as cmin is

decreased but the nonvariational nature and aug-cc-pVDZ ba-

sis could be responsible for this. However, the sign is different

to that of the computational study of Ref. [18] as we find that

the dipole is in the same direction as that of the ground state,

but we note that equation-of-motion CCSD (EOM-CCSD) calcu-

lations using MOLPRO[12] are in agreement with the sign and

magnitude of the MCCI results as it gives a dipole of about

1.60 Debye for cc-pVDZ and 1.72 Debye for aug-cc-pVDZ both

with two frozen cores.

NO

The dipole of NO in its doublet ground-state has been measured

as 0.157 Debye[21] and its sign verified as positive in Ref. [22] cor-

responding to N�Oþ. We use the experimental bond length of

1.1508 angstroms cited in Ref. [23] and, in addition to MCCI to-

gether with FCI results, we calculate the spin-unrestricted CCSD

(UCCSD) dipole moment using the numerical derivative of the

energy with respect to the electric field in MOLPRO.[12] To

Figure 9. MCCI and FCI results for the dipole moment (e Bohr) for the first

(1Rþ) excited state of CO at 2.116 Bohr (A1 symmetry within C2v) against

iteration number when using the cc-pVDZ basis set with two frozen cores.

Figure 10. MCCI, UCCSD, and FCI results for the dipole moment (e Bohr)

against iteration number for NO when using the 6-31G basis set.

Figure 8. MCCI and FCI results for the dipole moment (e Bohr) for the first
1 P excited state of CO (B1 symmetry within C2v) against iteration number

when using the cc-pVDZ basis set with two frozen cores at the experimen-

tal bond length of 2.334 Bohr.
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achieve this we use central differences and a step size of 10�4 in

the field strength.

Figure 10 shows that with a 6-31G basis MCCI quickly recov-

ers the correct sign after starting with a value close to the

incorrect HF dipole and gives a reasonable dipole moment

(0.0048 e Bohr), at this level of cut-off, in comparison with the

FCI result (0.0079 e Bohr) where it is more accurate than

UCCSD (0.0016 e Bohr) but the absolute differences in accu-

racy are very small.

Here, there are around 3 � 108 SDs in the FCI space when

considering symmetry compared with 3274 CSFs for MCCI

with no cores frozen in both cases.

In Figure 11, we see that with an aug-cc-pVDZ basis the

MCCI result with the larger cut-off is close to that of experi-

ment while UCCSD is just a little lower. However, when the ac-

curacy of MCCI is increased by lowering cmin to 5 � 10�4 the

calculated dipole is below that of UCCSD suggesting that per-

haps the most accurate result in this basis would be below

experiment, but the nonvariational nature means this predic-

tion is not certain. The dipole of around 0.12 Debye at the

highest accuracy MCCI considered is still in fairly good agree-

ment with experiment and we note that this used 17,188 CSFs

compared with a full CI space, without symmetry considera-

tions, of circa 1016 SDs.

Quadrupole moments

Nitrogen molecule. The Buckingham traceless quadrupole

moment tensor[24] is defined as

Qab ¼ 1

2

X

i

qið3riarib � dabr
2
i Þ (2)

where r ¼ (x,y,z). For a diatomic molecule, aligned along the

z-axis, with its center of mass at the origin this becomes for Qzz

Qzz ¼
1

2
ðhWjx̂2 þ ŷ2 � 2ẑ2 Wj i þ 2ZAR

2
A0 þ 2ZBR

2
0BÞ: (3)

Here, Zi is the charge of nucleus i and Ri0 is the distance

between nucleus i and the origin.

For N2, the traceless quadrupole moment with respect to

the center of mass at the origin has been measured[25] as

(�4.65 6 0.08) � 10�40 cm2 and revised in a theoretical

work[26] using an improved value for the correction term to

give (�5.01 6 0.08) � 10�40 cm2. We use the latter value and

the experimental bond length of 2.07432 Bohr cited in Ref. [26].

With a cc-pVDZ basis and two frozen cores, the cut-off of

10�3 gives reasonable agreement with the FCI results (see

Fig. 12). FCI results were calculated with a modified version of

PSI3.[13] The MCCI result used 5761 CSFs compared with the

SD space, when considering symmetries, of 5.4 � 108.

With the aug-cc-pVDZ basis, the results using 5 � 10�3

were within the experimental bounds with the MCCI result a

little lower than that of CCSD (see Fig. 13). The FCI space

would consist of around 1015 SDs if spatial symmetries are

neglected, whereas the MCCI wavefunction comprised about

22,000 CSFs.

The MCCI result of �1.105 e Bohr2 also compares favourably

with CCSD(T) results calculated in Ref. [26], where an aug-cc-

pVDZ basis with only valence electrons correlated gave

�1.1116 e Bohr2 and an aug-cc-pCVQZ with all electrons corre-

lated resulted in �1.1159 e Bohr2.

BH

A smaller calculation for which published FCI multipole results

are available is the quadrupole of BH in an aug-cc-pCVDZ

basis. We compare the MCCI results with those of FCI and

coupled cluster in Ref. [27]. Here, we use the experimental

bond length cited in the latter paper (2.3289 angstroms) and

the mass of the most common isotope of boron (11B) is used

to calculate the center of mass.

We see in Figure 14 that the quadrupole calculated using

MCCI rapidly reaches a value closer to the FCI result than

CCSD and is of comparable accuracy to that of CCSD(T) and

FCI on the scale of the plot. We note that the final MCCI wave-

function used 4276 CSFs compared with an FCI space of

around 5 � 107 SDs without symmetry considerations.

Figure 11. MCCI and UCCSD results for the dipole moment (e Bohr)

against iteration number for NO when using the aug-cc-pVDZ basis set

compared with experiment.

Figure 12. MCCI and FCI results for the traceless quadrupole moment Qzz

(e Bohr2) against iteration number for N2 when using the cc-pVDZ basis

set with two frozen cores.
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Octupole of methane

We calculate the octupole moment of methane at a tetrahe-

dral geometry with an equilibrium CH bond length[28] of 2.052

Bohr using a cc-pVDZ basis with one frozen core. Here, we

place the carbon atom at the origin and use the coordinates

of (xH,0,zH), (�xH,0,zH), (0,xH, � zH), and (0,xH, � zH) for the

hydrogen atoms, where zH ¼ 1.18486 Bohr and xH ¼ 1.67565

Bohr. We use the traceless octupole moment of Bucking-

ham[24] where, for our coordinates we have, for example,

Xxxz ¼
1

2
hWj � 4x̂2ẑ þ ŷ2ẑ þ ẑ3 Wj i þ 10x2HzH
� �

: (4)

We compare the MCCI value for the Xxxz component with FCI

and CISD results from a modified version of PSI3[13] and with

coupled cluster results from the program Dalton.[29] Figure 15

shows how the octupole converges relatively quickly with

MCCI using cmin ¼ 10�3. The value is an improvement on that

of CISD but, unsurprisingly, at this equilibrium geometry CCSD

is closer to the FCI result. The MCCI wavefunction consisted of

3330 CSFs, whereas the FCI space comprised of circa 4 � 108

SDs.

Stretched bond length. We now consider a geometry away

from equilibrium of R ¼ 5 Bohr for all CH bonds. This results

in xH ¼ 4.08248 and zH ¼ 2.88675. Here, the system is more

likely to be multireference and we see from the results in

Figure 16 that CISD and CCSD perform poorly giving an octu-

pole over six times that of the FCI. MCCI, even with a cut-off

as large as 10�3, does much better, but, although the absolute

difference is about 0.6 e Bohr3, the MCCI value is about 1.6

times smaller compared with FCI.

Multipole summary

We summarize the comparison of the MCCI with the FCI multi-

pole results calculated in this article in Table 1. Here, the small-

est cut-off MCCI results are presented and we see that over a

range of states and geometries, the MCCI multipoles are gen-

erally very close to the FCI results and the MCCI CSFs used are

just a very small percentage of the FCI SD space.

Figure 14. FCI and coupled cluster results from Ref. [27] and MCCI results

for the traceless quadrupole moment Qzz (e Bohr2) against iteration num-

ber for BH when using the aug-cc-pCVDZ basis set.

Figure 13. MCCI and CCSD results for the traceless quadrupole moment

Qzz (e Bohr2) against iteration number for N2 when using the aug-cc-pVDZ

basis set. Adapted from Ref. [3].

Figure 15. MCCI, CISD, CCSD, and FCI results for Xxxz (e Bohr3) of methane

against iteration number when using the cc-pVDZ basis set with one fro-

zen core.

Figure 16. MCCI, CISD, CCSD, and FCI results for Xxxz (e Bohr3) of methane

with R ¼ 5 Bohr against iteration number when using the cc-pVDZ basis

set with one frozen core.
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The largest percentage errors are for the dipole of NO and

the octupole of methane at a stretched geometry. In the for-

mer case, this is due to the dipole being very small while in

the latter case the strong multireference character, suggested

by the very poor performance of CCSD, may be responsible.

With the exception of these two systems, the errors of the

property tend to be similar to those of the correlation energy.

This and the behaviour of the errors of dipole and correlation

energy for CO with decreasing cmin (Fig. 4) hints that it may

be possible to use the scheme of Ref. [30] to approximate the

value of a property, rather than the correlation energy, for cmin

! 0 through repeated MCCI calculations for various fixed

numbers of CSFs. However, the nonvariational nature of the

properties and the large difference in correlation energy error

and property error seen for stretched CH4 suggest that caution

should be used if this approach is used in future work.

Ionisation energies

We now use MCCI to calculate ionisation energies for atoms

and compare the MCCI results with FCIQMC results[8] and the

‘‘exact’’ nonrelativistic results listed in Ref. [8] which they

extracted from Ref. [31]. FCIQMC uses projector or diffusion

Monte Carlo in a SD basis to approach the FCI solution with-

out needing to diagonalize the Hamiltonian matrix. The com-

putational difficulty for FCIQMC can be linked to the

number of walkers required for convergence in the

diffusion Monte Carlo calculation.

Using an aug-cc-pVQZ basis, we see in Table 2 that

values all within 7 milliHartree of the FCIQMC are

achieved with always fewer than an average of 4000

CSFs. Here, we used cmin ¼ 5 � 10�4 and 500 itera-

tions on 12 processors with the exception of the lith-

ium cation which was still the HF reference after 500

iterations so was run for 3000 iterations. In this case,

the calculation takes less than 2 min and gave a final

state of 54 CSFs.

The sodium atom used only about 2000 walkers

and a few minutes in Ref. [8] compared with an FCI

space of around 1015 and we find here that it requires

907 CSFs and 142 s with MCCI when using 12

processors. We can see in Table 2 that the MCCI calcu-

lation for sodium gives almost the same ionisation

energy as FCIQMC. We found that the fluorine atom required

the largest number of CSFs at 4189 compared with an FCI

space of around 1013 SDs and a calculation time of just over

an hour using 12 processors.

We note that magnesium was not calculated in an aug-cc-

pVQZ basis in Ref. [8] due to CPU time constraints using

FCIQMC, whereas here we note it required about 1000 CSFs

compared with having the largest full CI space of 1017and the

calculation required around 5 min for the cation and less for

the atom. The MCCI result gave an error of about 1.7% com-

pared with the ‘‘exact’’ result of 280.65 milliHartree. The oxygen

atom was found to be particularly challenging for FCIQMC

where it required 100 million walkers and around 48 h on 32

processors. The MCCI value used 3541 CSFs for the atom

(2162 for the cation) and required almost an hour on 12 pro-

cessors, but here the MCCI result at this level of cut-off is 8

milliHartree below that of FCIQMC although the percentage

error is just 1.2. We see in Figure 17 that this was the largest

percentage error when compared with FCIQMC. This error

could be brought lower but to the detriment of calculation

Table 1. MCCI and FCI multipole results in atomic units, the fraction of CSFs used

in MCCI when compared with the symmetry adapted FCI space using SDs, the

percentage error of the correlation energy and the percentage error of the

property compared with the FCI. The cc-pVDZ basis is used except for NO which

has 6–31G. No orbitals are frozen for NO, whereas one is frozen for CH4 and the

other results use two frozen orbitals. Experimental geometries as presented earlier

in the paper are used unless otherwise stated.

Property MCCI FCI

% FCI

space

Ecorr
error (%)

Property

error (%)

CO l 0.0850 0.0905 3.63 � 10�3 1.89 6.05

CO R ¼ 4 l �0.328 �0.323 1.17 � 10�3 3.79 1.70

CO 3P l �0.551 �0.511 6.33 � 10�4 4.31 7.73

CO 1P l �0.138 �0.135 9.59 � 10�4 – 2.22

CO excited 1Rþ l 0.614 0.558 8.31 � 10�4 – 9.97

NO l 0.00475 0.00794 9.55 � 10�4 1.35 40.2

N2 Qzz �1.342 �1.356 1.07 � 10�3 1.06 1.02

CH4 Xxxz 2.056 2.0049 7.95 � 10�4 4.98 2.54

CH4 R ¼ 5 Xxxz 1.000 1.631 3.24 � 10�3 1.25 38.7

Table 2. MCCI with cmin 5 5 3 1024 average CSFs for atom and cation.

Ionisation energies in milli Hartree using aug-cc-pVQZ from MCCI and

FCIQMC.[8]

Atom MCCI mean CSFs MCCI FCIQMC[8]

Li 101 197.46 197.35

Be 270 341.02 341.89

B 869 302.66 304.02

C 1572 411.89 413.10

N 2174 531.42 535.85

O 2851 491.38 497.35

F 3536 631.46 638.61

Ne 3376 786.14 792.48

Na 707 184.93 184.32

Mg 1064 275.75 –

Figure 17. MCCI error with cmin ¼ 5 � 10�4 when compared with

FCIQMC[8] both using an aug-cc-pVQZ basis and ‘‘exact’’ nonrelativistic (NR)

ionisation energies.[31] MCCI CBS approximation error with cmin ¼ 5 � 10�4

compared with ‘‘exact’’ nonrelativistic (NR) ionisation energies.
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size and time by reducing the MCCI cut-off. It is interesting

that the error raises then peaks at oxygen when compared

with FCIQMC but the error with the ‘‘exact’’ gives the impres-

sion of an overall trend for a rising error. Although oxygen

now has the second largest error with sodium the largest. We

note that all the MCCI errors are under 2% when compared

with the ‘‘exact’’ results.

We also consider approximating the MCCI ionisation energy

in the complete basis set (CBS) limit. While the MCCI ionisation

energy is not variational and would not be expected to

behave monotonically with increasing basis size, the underly-

ing energies should smoothly approach the CBS limit. We use

the scheme of Ref. [32], given by Ex ¼ E1 þ Aðx þ 1Þe�9
ffiffi
x

p
, to

approximate the CBS limit for the HF energy. For the MCCI cor-

relation energy, we use Ecorr,x ¼ Ecorr, 1 þ Bx�3 from Ref. [33]

to approximate the CBS limit. Here, x ¼ 2 for aug-cc-pVDZ, x

¼ 3 for aug-cc-pVTZ, and so on. We fit the schemes to the

results at aug-cc-pVTZ and aug-cc-pVQZ. We note that we

neglect aug-cc-pVDZ as it is often considered better to fit to

two points rather than three if the third is thought to be too

far from the CBS limit. Furthermore, the use of aug-cc-pVTZ

and aug-cc-pVQZ for the HF extrapolation was found to not

work so well in Ref. [32], but we note that, when using the

schemes here, the change in the HF energy is much smaller

than the change in the correlation energies. In Figure 17, we

display the error of the MCCI approximate CBS when com-

pared with the ‘‘exact’’ ionisation energies. We see that the

approximation to the MCCI CBS at cmin ¼ 5 � 10�4 has a

lower percentage error except in the case of the result for

magnesium. In general, the approximate CBS percentage

errors tend not to be substantially lower but the results for

lithium and oxygen are noticeably more accurate.

We see in Figure 18 that for a given percentage error in the

ionisation energy, the percentage errors in the correlation

energy are fairly similar for the atom and cation when compar-

ing MCCI and FCIQMC results. We note that the cation usually,

but not always, has a slightly lower error for the correlation

energy. The general trend is for the ionisation energy error to

increase with increasing correlation energy error with the for-

mer generally smaller than the latter. There appears to be a

much stronger linear relationship in the percentage errors for

the atoms than for the cations: the statistical correlation

between the results is 0.91 for the atoms and 0.51 for the

cations.

Electron affinities

We finally compare electron affinities calculated with MCCI

with those of initiator FCIQMC (i-FCIQMC)[9] and ‘‘exact’’ nonre-

lativistic results from Ref. [9] which are again extracted from

Ref. [31]. Electron affinities are considered computationally

difficult, partly due to the requirement of achieving a balanced

error in the atom and anion calculations with the latter’s extra

electron often weakly bound. We ran the calculation for 3000

iterations for cmin ¼ 5 � 10�4, but with the exception of

sodium the percentage errors were not much different to the

values at 500 iterations. The largest FCI space was sodium at

around 1017 for which the MCCI calculation of the anion

required 864 CSFs and less than 10 min. The largest number

of CSFs at cmin ¼ 5 � 10�4 was 6054 for the oxygen anion

compared with an FCI space of around 1013. This calculation

at 3000 iterations needed around 19 h on 12 processors, but

Figure 18. Percentage error in the ionisation energy plotted against the

percentage error in the correlation energy of the atom (circles) or cation

(crosses). All results are for MCCI at cmin ¼ 5 � 10�4 compared with

FCIQMC[8] both using an aug-cc-pVQZ basis.

Table 3. MCCI with cmin 5 5 3 1024 average CSFs for atom and anion.

Electron affinities in milliHartree using aug-cc-pVQZ from MCCI and

i-FCIQMC.[9]

Atom MCCI mean CSFs MCCI FCIQMC[8]

Li 295 22.34 22.60

B 2362 8.18 9.67

C 3066 43.20 46.10

O 4869 43.93 52.15

F 4538 118.95 124.29

Na 909 18.87 20.03

Figure 19. MCCI error with cmin ¼ 5 � 10�4 when compared with

i-FCIQMC[9] both using an aug-cc-pVQZ basis and ‘‘exact’’ nonrelativistic

(NR) electron affinities.[31] MCCI CBS approximation error with cmin ¼ 5 �
10�4 when compared with ‘‘exact’’ (NR) electron affinities.
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we note that the results were not much different to 500 itera-

tions which required less than 3 h.

We see in Table 3 that the MCCI values are reasonably close

to the i-FCIQMC results with the difference always less than 10

milliHartree and the number of mean CSFs always fewer than

5000. However, due to the electron affinities being much

smaller than the ionisation values the percentage errors seen

in Figure 19 are much higher than the ionisation errors when

using cmin ¼ 5 � 10�4. Particularly, we see in Table 3 that the

absolute error in boron is actually quite low, but the very small

electron affinity means the percentage error is large, whereas

oxygen has the largest absolute and largest percentage error

when compared with the i-FCIQMC results.

In Figure 19 with cmin ¼ 5 � 10�4, the largest MCCI error is

now around 20% when compared with the ‘‘exact’’ results and

15% when compared with i-FCIQMC. The two most difficult

systems are boron and oxygen, which, by reducing cmin to

10�4 we can get their errors with MCCI to around 3 and 8%,

respectively, when compared with i-FCIQMC. However, this

comes at a computational cost: for this cut-off the boron

anion needed 13,734 CSFs, whereas the oxygen anion calcula-

tion required 37,225 CSFs and a calculation time of 28 h on

eight processors when the reference state was the MCCI wave-

function from the cmin ¼ 5 � 10�4 calculation.

We also approximate the CBS limit of the MCCI electron

affinities using the same procedure as for the MCCI ionisation

energies. With cmin ¼ 5 � 10�4, we see in Figure 19 that the

MCCI electron affinities when approximating the CBS have an

error that is similar to the results using an aug-cc-pVQZ basis

when compared with the ‘‘exact’’ results, but, in contrast to the

behaviour seen for the ionisation energy error, the approxi-

mate CBS MCCI value is more likely to have a greater error

than the aug-cc-pVQZ results.

Figure 20 shows that the percentage errors in the correla-

tion energy are actually fairly similar for the atom and anion

with a fixed value of electron affinity error, that is, within a

given system. It appears that the small difference between the

energy of the atom and anion often amplifies the errors for

the electron affinity here. This is in contrast to the ionisation

errors where the errors in correlation energies tended to be

larger than those of the ionisation energy (Fig. 20). The large

errors in the affinity for boron means that there appears to be

less of a linear relationship here compared with the previous

results for the ionisation energy: now the statistical correlation

for the atom results 0.33 and the value for the anion results

is 0.50.

Conclusions

In this article, we have demonstrated that not only is MCCI

useful for energy calculations but also other properties, in the

form of multipole moments, may generally be calculated to

sufficiently high accuracy with it when compared with FCI

results yet using a very small fraction of the FCI space (see

Table 1). By using an aug-cc-pVDZ basis, resulting in a full con-

figuration space far beyond current FCI, MCCI results could

also be seen to generally give a fairly good agreement with

experiment. For the calculations of ground-state multipole

moments at equilibrium geometries, methods based on

coupled cluster would be expected to be one of the most

efficient choices. However, we note that MCCI can perform

substantially better when the system moves away from equi-

librium and is multireference. In addition the use of different

spin states and excited states present no problems, in theory,

for MCCI. However, we note that the results for excited states

appeared to be more sensitive to the removal of states for the

dipole of the first excited state of A1 symmetry within C2V for

carbon monoxide. Investigations into the use of state-averag-

ing to prevent these oscillations are planned.

We saw that ionisation energies for atoms can be calculated

using MCCI with an aug-cc-pVQZ basis to an error of less than

1.2% compared with FCIQMC[8] and less than 2% compared

with ‘‘exact’’ nonrelativistic results. We note that the largest FCI

space was for magnesium with 1017 SDs and this was not cal-

culated in Ref. [8] using FCIQMC due to time constraints, but

here only required about 1000 CSFs. Similarly to the results of

FCIQMC,[8,9] we found that the system rather than just the size

of the FCI space was a factor in the cost and accuracy of the

calculation: oxygen had the largest percentage error compared

with FCIQMC here and required 3541 CSFs compared with an

FCI space of ‘‘only’’ 1013. Electron affinity calculations were

more challenging for MCCI. Although the absolute errors with

i-FCIQMC[9] were fairly similar to the ionisation energies at less

than 10 milliHartree when using cmin ¼ 5 � 10�4, the percent-

age error was much higher, partly due to the much smaller

energies involved: the largest MCCI error is now around 20%

when compared with the exact and 15% when compared with

i-FCIQMC. The highest error with respect to i-FCIQMC was oxy-

gen and this could be reduced to around 8% by lowering cmin

to 10�4 but now 37,225 CSFs were required for the anion

compared with the FCI space of around 1013. We note that

the percentage error in the MCCI correlation energy at cmin ¼
5 � 10�4 was fairly similar for a given atom, its cation and its

anion. It was also always lower than 7%. This suggests that

MCCI performs similarly for the calculation of ionisation

Figure 20. Percentage error in the electron affinity plotted against the per-

centage error in the correlation energy of the atom (circles) or anion

(squares). All results are for MCCI at cmin ¼ 5 � 10�4 compared with

i-FCIQMC[9] both using an aug-cc-pVQZ basis.
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energies and electron affinities but the smaller values of the

latter means it has larger percentage errors.

MCCI appears to possibly be a useful alternative for the cal-

culation of ionisation energies of atoms using a very compact

wavefunction, however for electron affinities the larger fraction

of the FCI space that appears necessary to be explored for a

balanced description of the anion at higher accuracy suggests

that other methods may be more appropriate here if consis-

tently small percentage errors are required. It would appear

that for situations where more standard methods have difficul-

ties, such as excited states, then MCCI could be a useful tool

for the calculation of properties such as multipoles. The results

for multipoles at geometries away from equilibrium were seen

to be substantially better at approximating the FCI result

when using MCCI than when using methods based on a single

reference suggesting that MCCI could also be useful for the

calculation of multipole surfaces.

Keywords: Monte Carlo configuration interaction � multipole

moments � full configuration interaction � ionisation ener-

gies � electron affinities

How to cite this article: J. P. Coe, D. J. Taylor, M. J. Paterson, J.

Comput. Chem. 2013, 34, 1083–1093. DOI: 10.1002/jcc.23211

[1] J. C. Greer, J. Chem. Phys. 1995a, 103, 1821.

[2] L. Tong, M. Nolan, T. Cheng, J. C. Greer, Comput. Phys. Commun. 2000,

142, 132.

[3] J. P. Coe, M. J. Paterson, In Recent Research Development Chemistry

Physics, Vol. 6; Transworld Research Network: Kerala, India, 2012; pp.

41–65.

[4] J. C. Greer, J. Chem. Phys. 1995b, 103, 7996.

[5] J. A. Larsson, L. Tong, T. Cheng, M. Nolan, J. C. Greer, J. Chem. Phys.

2001, 114, 15.

[6] W. Gy€orffy, R. J. Bartlett, J. C. Greer, J. Chem. Phys. 2008, 129, 064103.

[7] J. P. Coe, D. J. Taylor, M. J. Paterson, J. Chem. Phys. 2012, 137, 194111.

[8] G. H. Booth, A. Alavi, J. Chem. Phys. 2010, 132, 174104.

[9] D. M. Cleland, G. H. Booth, A. Alavi, J. Chem. Phys. 2011, 134, 024112.

[10] E. R. Davidson, J. Comput. Phys. 1975, 17, 87.

[11] H. Lischka, R. Shepard, I. Shavitt, R. M. Pitzer, M. Dallos, T. Muller, P. G.

Szalay, F. B. Brown, R. Ahlrichs, H. J. Boehm, A. Chang, D. C. Comeau,

R. Gdanitz, H. Dachsel, C. Ehrhardt, M. Ernzerhof, P. Hochtl, S. Irle, G.

Kedziora, T. Kovar, V. Parasuk, M. J. M. Pepper, P. Scharf, H. Schiffer, M.

Schindler, M. Schuler, M. Seth, E. A. Stahlberg, J.-G. Zhao, S. Yabushita,

Z. Zhang, M. Barbatti, S. Matsika, M. Schuurmann, D. R. Yarkony, S. R.

Brozell, E. V. Beck, J.-P. Blaudeau, M. Ruckenbauer, B. Sellner, F. Plasser,

J. J. Szymczak, Columbus, An ab initio Electronic Structure Program,

Release 5.9.2, available at: http://www.univie.ac.at/columbus, 2008.

[12] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani,
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P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J.

Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, Molpro, Version

2010.1, A Package of ab initio Programs, 2010, available at: http://

www.molpro.net.

[13] T. D. Crawford, C. D. Sherrill, E. F. Valeev, J. T. Fermann, R. A. King, M. L.

Leininger, S. T. Brown, C. L. Janssen, E. T. Seidl, J. P. Kenny, W. D. Allen,

J. Comput. Chem. 2007, 28, 1610.

[14] G. E. Scuseria, M. D. Miller, F. Jensen, J. Geertsen, J. Chem. Phys. 1991,

94, 6660.

[15] J. S. Muenter, J. Mol. Spectrosc. 1975, 55, 490.

[16] K. A. Peterson, R. C. Woods, J. Chem. Phys 1990, 93, 5029.

[17] B. G. Wicke, R. W. Field, W. Klemperer, J. Chem. Phys. 1972, 56, 5758.

[18] D. L. Cooper, K. Kirby, J. Chem. Phys. 1987, 87, 424.

[19] M. Drabbels, W. L. Meerts, J. J. ter Meulen, J. Chem. Phys. 1993, 99,

2352.

[20] N. J. Fisher, F. W. Dalby, Can. J. Phys. 1976, 54, 258.

[21] A. R. Hoy, J. W. C. Johns, A. R. W. Mckellar, Can. J. Phys. 1975, 53, 2029.

[22] A. Gijsbertsen, W. Siu, M. F. Kling, P. Johnsson, P. Jansen, M. J. J. Vrak-

king, Phys. Rev. Lett. 2007, 99, 213003.

[23] R. Say�os, R. Valero, J. M. Anglada, M. Gonz�alez, J. Chem. Phys 2000,

112, 6608.

[24] A. D. Buckingham, Q. Rev. Chem. Soc. 1959, 13, 183.

[25] C. Graham, D. A. Imrie, R. E. Raab, Mol. Phys. 1998, 93, 49.

[26] A. Halkier, S. Coriani, P. Jørgensen, Chem. Phys. Lett. 1998, 294, 292.

[27] A. Halkier, H. Larsen, J. Olsen, P. Jørgensen, J. Gauss, J. Chem. Phys.

1999, 110, 734.

[28] D. L. Gray, A. G. Robiette, Mol. Phys. 1979, 37, 1901.

[29] Dalton, A Molecular Electronic Structure Program, Release 2.0, 2005,

available at: http://daltonprogram.org/.

[30] W. Gyo†rffy, T. M. Henderson, J. C. Greer, J. Chem. Phys. 2006, 125,

054104.

[31] T. Koga, H. Aoki, J. M. G. de la Vega, H. Tatewaki, Theor. Chem. Acc.

1997, 96, 248.

[32] A. Karton, J. M. L. Martin, Theor. Chem. Acc. 2006, 115, 330.

[33] T. Helgaker, W. Klopper, H. Koch, J. Noga, J. Chem. Phys. 1997, 106,

9639.

Received: 28 August 2012
Revised: 23 November 2012
Accepted: 1 December 2012
Published online on 19 January 2013

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 1083–1093 1093

http://onlinelibrary.wiley.com/

