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ON LOG CONCAVITY FOR ORDER-PRESERVING AND ORDER-NON-REVERSING MAPS

OF PARTIAL ORDERS

* .+ +
D.E. Daykin and J.W. Daykin and M.S. Paterson

Abstract. Stanley used the Aleksandrov—Fenchel inequalities from the

theory of mixed volumes to prove the following result. Let P be

a partially ordered set with n elements, and let x € P. If N: is
the number of linear extensions A : P » {1, 2,...,n} satisfying
A(x) =i, then the sequence N:,...,N; is log concave (and therefore
unimodal). Here the analogous results for both order-preserving
and order-non-reversing maps are proved using an explicit
injection. Further, if Ve is the number of order-preserving maps
of P into a chain of length ¢, then V. is shown to be log concave,

and the corresponding result is established for crder—non-reversing

maps.

Introduction

Let P be a poset (= partially ordered set) with n elements and

C a chain with c elements. We are interested in certain log concavity

properties of order-related mappings from the elements of P into C.

Definitions of 3 classes of such maps are as follows.
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Amap A : P> [n]={1,2,...,n} is a linear extensiop of P if
A is 1-1 and,for all x,y € P, x < y implies A(x) < A(y).

For (P,C), amap w : P » C is order-preserving if, for all

X,y € P, x < y implies w(x) < w(y). Note that w need not be 1-1.
(Some authors require |P| = |C|, but we do not need this restriction).

For (P,C), amap p : P » C is order-non-reversing if, for all

X,y € P, x < y imples p(x) < p(y).

7

... of non-—negative real numbers is said to be

A sequence a ,a

4 0’1’
log concave if a. . a, , S ag for 1 < i. In particular, a log
—— l—l 1+1 1 ’

concave sequence is unimecdal, i.e. for some j we have

a <a, <£..< a. and a. = a. , =...
o 1 ] 3 i+l

In 1980 Stanley [10] used the Aleksandrov-Fenchel inequalities
(which guarantee the logarithmic concavity of coefficients arising
from the volume of weighted sums of n-dimensional polytopes) to
prove that certain sequences of combinatorial interest are log
concave (surveys of mixed volumes appear in [3], [5]). One such
result is:

Theorem 1 (Stanley). Let X, € +.. < X be a fixed chain in P.

1
. . . * . .
If 1< i< eee < i < n, then define N (11,...,1k) to be the number
of linear extensions A : P -+ [n] such that A(xj) = ij for 1 € j < k.
<< . + . . _ —
Suppose 1 ] k and 1j_1 1< 1J < 1J+l 1, where we set 1 0

and ik+1 = n+l. Then

* . 3 L3 . *l . . 3
N (11,...,1j_1,1j-1,1j+1,...,1k)N (11,...,1j_1,1j+1,1j+1
icular, th kel yields N &%, L <x™ £i rmi
In particular, the case k=1 yields Ni—l i+ SN » confirming

a conjecture of Chung, Fishburn and Graham [4], which strengthened an
* *

unpublished conjecture of R. Rivest that the sequence Nl,...,Nn is

unimodal. Chung et al.established log concavity for the case that P

is a union of two linear orders, i.e. chains.

. * -
,...,1k)<N (11,...



Graham 8] asked whether the analogue of Stanley's Theorem is
true for order-preserving maps, and noted that the FKG inequality (6]
can be used very naturally to prove the log concavity of various
sequences of a combinatorial nature (e.g.see [9]). He suggests [7]
that Stanley's result, and the analogue conjectured result for
order-preserving maps, should have proofs based on the FKG inequality
or the more general AD irnequality [1], but these have as yet eluded
discovery.

We present an injective proof for the corresponding result for
order-preserving maps. The injection consists of comstructing, for
each pair of maps with ml(x) = r and mz(x) = r+s+t, a unique pair of maps
with w3(x) = r+s and wa(x) = r+t. That is if two ordered pairs of the form
(wl,mz) are distinct, then their two associated (w3,w4) pairs are
distinct, thus ensuring the inquality. With minor changes the injection
yields log concavity for order-non-reversing maps.

Log concave sequences can be proved (see [2]) to satisfy the more

general inequality,

< >

ar ar+s+t < ar+s ar+t for natural numbers r,s,t = O.
Finally, if v, is the number of order—-preserving maps of P into

a chain of length c, then v, is shown to be log concave. The analogue

is established for order-non-reversing maps.

2. Order-Preserving Maps

Theorem 2 Let C be a finite chain, and let Xyseeen Xy be a fixed subset
in P. Define N(il,...,ik) to be the number of order-preserving

maps w : P + C such that w(xj) = ij for 1 € j< k. Let r,s,t be natural
numbers, then

N(r,1i .. ,ik)N(r+s+t,iz,. ..,ik) < N(r+s,i2,... ,ik)N(r+t,i2,.. . ,ik) .

2’

In particular, the case k =1 and s = t = 1 yields NN < N2
T r+? r+l



Proof Suppose that the L.H.S. of the inquality is not equal to O,
and that s,t > 0, for otherwise the result clearly holds. Since only
the height in C, of X changes, for brevity denote X by x. We will
first prove the result for k = 1 namely, N(r)N(r+s+t) < N(r+s)N(r+t),
and then show how it easily extends to k > 1.

Given any pair of order-preserving maps Wy, P -~ C with
ml(x) = r and mz(x) = r+s+t, we will construct a unique pair of

order-preserving maps Was, P > C with w3(x) = r+s and m4(x) = r+t.

We may assume C is 1<2 <...< c and write C+t for 1+t<Z+t <...< ctt.
Now the pair wl,wz may equally be regarded as an order-preserving map B
into the direct product (C+t) x C = {(y,y') : y e C+t, y' e C},
with the partial ordering: (Yl,yz) < (61,52) if both y1< 61 in C+t
and Yy < 62 in C. Thus B = Bl X 82 : P > (C+t) x C where,
for p € P, Bl(p) =t + wl(p) and Bz(p) = wz(p). In particular, we
have B(x) =( r+t, r+s+t ).

Now define the operation flip( j,k ) = (k,j ). We will
say p forces q for p,q € P if,
either p < q and flip(B(p)) €B(q),i.e. Bz(p) > Bl(q) or Bl(p) = Bz(q),
or p >q and flip(B(p)) »B(q).

Also define DB ={p:pe?P, x (forces)*p}, where "(forces)*"
is the reflexive and transitive closure of "forces". That is, X € DB
and the forcing procedure propagates from x to form the subset DB of P.

Since P is finite the propagation must halt (possibly with DB = P),

and then we let §(B) : P > 7 x 7 be defined by

§(B) (p) flip(B(p)) if p € D

B
B(p) if p ¢ Dy -

Lemma 1 6&(B) is order-preserving.

Proof Immediate from the definitions. O



Lemma 2 Bl(d) < Bz(d) for d € DB.
Proof We have Bl(x) < Bz(x), since 8 > 0. So it is sufficient to
show that if Bl(d) < Bz(d) for some d € DB, then this relation holds

for any p in D_ forced by d. Suppose first that d < p, and so

B
Bl(p) < Bz(d) < Bz(p) or Bz(p) < Bl(d) < Bz(d) < Bz(p). The latter
is impossible and the former establishes the claim. The proof

if d > p, is similar. O

Lemma 3 5(B)(p) € (C+t) x C for p ¢ P.

Proof If p é DB then it is clearly true. Now for p € DB we have

1 < 1+t € Bl(p) < Bz(p) < ¢ < c+t. Hence flip(B(d)) e (C+t) x C. C

Lemma 4 §(8§(B)) = B.

Suppose d € DB’

Proof It is sufficient to show that DS(B)= DB.

then flip(6(B)(d)) = B(d) by the definition of DS(B)' Therefore

d forces p with respect to §(B) if

either d < p and B(d) < §(B) (p),

or d > p and B(d) » §(B)(p).

If p é DB then §(B) (p) B(p) and so, since B is order-preserving,

d does not force p.

If p ¢ DB then §(B)(p) flip(B(p)) and in this case d forces p

with respect to §(B) iff d forces p with respect to B.

Hence DG(B)=DB'

Corollary § is injective. O

Now W, and w, are given by §(B) = (t + w3,w4) concluding the case k = 1.
Finally, we show how the result extends to a subset

{Xl""’xk} ¢ P where k > 1. For X, with 2 € i < k, we have

wl(xi) = w2(xi) and Bl(xi) =t + ml(xi) > BZ(Xi) = wz(xi). From

Lemma 2 we deduce that x, ¢ Dy giving S(B)(xi) = B(Xi) as required. U



Theorem 3 Let Vo be the total number of order-preserving
maps w : P + C. Then VisVgseoe is log concave.
Proof Given P, let Q be the poset P u q where p < q, ¥ p € P.
Then note that 7 equals Ni+1 for x = q in Q and 1 < i. The result
follows by log concavity of the sequence hi+1’Ni+2"" C
3, Order-non-reversing maps
We will employ a corresponding injection to show log concavity
- ** . -
for order-ncn-reversing maps. Define N (11,...,1k) to be the
number of order-non-reversing maps p ¢ P - C such that

x,) =1, for 1 € j € k.
p( J) ; ]

*k .
Theorem 4 The analogue of Theorem 2 holds for N (11,...,1k).

Proof The proof follows a parallel course to that of Theorem 2, but
(C + t) x C now takes the usual product ordering, and p forces q
if p < q and Bz(p) > Bl(q) or Bl(p) > B,(q) and similarly when p > q. C
re
%k
Define R to be the total number of order—mon-reversing
maps p ¢ P > C.
Kk

Theorem 5 The analogue of Theorem 3 holds for v o
Proof The proof follows that of Theorem 3, with

*% *%
\)i equal to Ni for x =q in Q and 1 < 1.

4, Remarks

It appears unlikely that Stanley's Theorem for linear extensions
quoted earlier can be proved using the kind of injection presented
here. We may however easily strengthen his result to bring it into

line with our Theorems 2 and 4, by removing the condition that the x's



form a chain in P. Suppose {xl,...,xk} is an arbitrary subset
of P, then without loss of generality assume il <...< ik. If we
augment P with the new relatioms X) Ceee< X then N is unchanged
and Stanley's Theorem applies to the new partial order.

As [CI increases, the proportion of order-preserving maps

with w(y) = w(z) for some y # z diminishes. We note that

* % *%
v o~V and N, ¥ N. as ¢ =+ «,
c c 1 i

We may define a real-valued function fP L o0 the unit
-

interval by
* k%
£ (u) = lim ¢ N /v =1limc N * /v
» X co L‘-ICJ ¢ Cw Ll_l(il ¢

fP < represents the probability distribution of the value of w(x)
b

with respect to the wniform distribution of order-preserving maps
over the convex region of a unit n-dimensional cube defined by P.
For further details on these convex regions see [10].

An easy consequence of our thecrems is

Corollary fP x is a log-concave (real-valued) functionm,
H]

i.e. log(fp’x? is concave.
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