5,665 research outputs found

    Probing brown dwarf formation mechanisms with Gaia

    Get PDF
    One of the fundamental questions in star formation is whether or not brown dwarfs form in the same way as stars, or more like giant planets. If their formation scenarios are different, we might expect brown dwarfs to have a different spatial distribution to stars in nearby star-forming regions. In this contribution, we discuss methods to look for differences in their spatial distributions and show that in the only nearby star-forming region with a significantly different spatial distribution (the Orion Nebula Cluster), this is likely due to dynamical evolution. We then present a method for unravelling the past dynamical history of a star-forming region, and show that in tandem with Gaia, we will be able to discern whether observed differences are due to distinct formation mechanisms for brown dwarfs compared to stars

    Did the Solar System form in a sequential triggered star formation event?

    Get PDF
    The presence and abundance of the short-lived radioisotopes (SLRs) 26^{26}Al and 60^{60}Fe during the formation of the Solar System is difficult to explain unless the Sun formed in the vicinity of one or more massive star(s) that exploded as supernovae. Two different scenarios have been proposed to explain the delivery of SLRs to the protosolar nebula: (i) direct pollution of the protosolar disc by supernova ejecta and (ii) the formation of the Sun in a sequential star formation event in which supernovae shockwaves trigger further star formation which is enriched in SLRs. The sequentially triggered model has been suggested as being more astrophysically likely than the direct pollution scenario. In this paper we investigate this claim by analysing a combination of NN-body and SPH simulations of star formation. We find that sequential star formation would result in large age spreads (or even bi-modal age distributions for spatially coincident events) due to the dynamical relaxation of the first star-formation event(s). Secondly, we discuss the probability of triggering spatially and temporally discrete populations of stars and find this to be only possible in very contrived situations. Taken together, these results suggest that the formation of the Solar System in a triggered star formation event is as improbable, if not more so, than the direct pollution of the protosolar disc by a supernova

    Comparisons between different techniques for measuring mass segregation

    Get PDF
    We examine the performance of four different methods which are used to measure mass segregation in star-forming regions: the radial variation of the mass function MMF\mathcal{M}_{\rm MF}; the minimum spanning tree-based ΛMSR\Lambda_{\rm MSR} method; the local surface density ΣLDR\Sigma_{\rm LDR} method; and the ΩGSR\Omega_{\rm GSR} technique, which isolates groups of stars and determines whether the most massive star in each group is more centrally concentrated than the average star. All four methods have been proposed in the literature as techniques for quantifying mass segregation, yet they routinely produce contradictory results as they do not all measure the same thing. We apply each method to synthetic star-forming regions to determine when and why they have shortcomings. When a star-forming region is smooth and centrally concentrated, all four methods correctly identify mass segregation when it is present. However, if the region is spatially substructured, the ΩGSR\Omega_{\rm GSR} method fails because it arbitrarily defines groups in the hierarchical distribution, and usually discards positional information for many of the most massive stars in the region. We also show that the ΛMSR\Lambda_{\rm MSR} and ΣLDR\Sigma_{\rm LDR} methods can sometimes produce apparently contradictory results, because they use different definitions of mass segregation. We conclude that only ΛMSR\Lambda_{\rm MSR} measures mass segregation in the classical sense (without the need for defining the centre of the region), although ΣLDR\Sigma_{\rm LDR} does place limits on the amount of previous dynamical evolution in a star-forming region

    Dynamical evolution of star forming regions - II. Basic kinematics

    Get PDF
    We follow the dynamical evolution of young star-forming regions with a wide range of initial conditions and examine how the radial velocity dispersion, σ\sigma, evolves over time. We compare this velocity dispersion to the theoretically expected value for the velocity dispersion if a region were in virial equilibrium, σvir\sigma_{\rm vir} and thus assess the virial state (σ/σvir\sigma / \sigma_{\rm vir}) of these systems. We find that in regions that are initially subvirial, or in global virial equilibrium but subvirial on local scales, the system relaxes to virial equilibrium within several million years, or roughly 25 - 50 crossing times, according to the measured virial ratio. However, the measured velocity dispersion, σ\sigma, appears to be a bad diagnostic of the current virial state of these systems as it suggests that they become supervirial when compared to the velocity dispersion estimated from the virial mass, σvir\sigma_{\rm vir}. We suggest that this discrepancy is caused by the fact that the regions are never fully relaxed, and that the early non-equilibrium evolution is imprinted in the one-dimensional velocity dispersion at these early epochs. If measured early enough (<<2 Myr in our simulations, or \sim20 crossing times), the velocity dispersion can be used to determine whether a region was highly supervirial at birth without the risk of degeneracy. We show that combining σ\sigma, or the ratio of σ\sigma to the interquartile range (IQR) dispersion, with measures of spatial structure, places stronger constraints on the dynamical history of a region than using the velocity dispersion in isolation

    On the spatial distributions of stars and gas in numerical simulations of molecular clouds

    Get PDF
    We compare the spatial distribution of stars which form in hydrodynamical simulations to the spatial distribution of the gas, using the Q\mathcal{Q}-parameter. The Q\mathcal{Q}-parameter enables a self-consistent comparison between the stars and gas because it uses a pixelated image of the gas as a distribution of points, in the same way that the stars (sink particles in the simulations) are a distribution of points. We find that, whereas the stars have a substructured, or hierarchical spatial distribution (Q0.40.7\mathcal{Q} \sim 0.4 - 0.7), the gas is dominated by a smooth, concentrated component and typically has Q0.9\mathcal{Q} \sim 0.9. We also find no statistical difference between the structure of the gas in simulations that form with feedback, and those that form without, despite these two processes producing visually different distributions. These results suggest that the link between the spatial distributions of gas, and the stars which form from them, is non-trivial

    Supernova enrichment of planetary systems in low-mass star clusters

    Get PDF
    The presence and abundance of short lived radioisotopes (SLRs) 26^{26}Al and 60^{60}Fe in chondritic meteorites implies that the Sun formed in the vicinity of one or more massive stars that exploded as supernovae (SNe). Massive stars are more likely to form in massive star clusters (>>1000 M_{\odot}) than lower mass clusters. However, photoevaporation of protoplanetary discs from massive stars and dynamical interactions with passing stars can inhibit planet formation in clusters with radii of \sim1 pc. We investigate whether low-mass (50 - 200 M_{\odot}) star clusters containing one or two massive stars are a more likely avenue for early Solar system enrichment as they are more dynamically quiescent. We analyse NN-body simulations of the evolution of these low-mass clusters and find that a similar fraction of stars experience supernova enrichment than in high mass clusters, despite their lower densities. This is due to two-body relaxation, which causes a significant expansion before the first supernova even in clusters with relatively low (100 stars pc3^{-3}) initial densities. However, because of the high number of low mass clusters containing one or two massive stars, the absolute number of enriched stars is the same, if not higher than for more populous clusters. Our results show that direct enrichment of protoplanetary discs from supernovae occurs as frequently in low mass clusters containing one or two massive stars (>20 M_{\odot}) as in more populous star clusters (1000 M_\odot). This relaxes the constraints on the direct enrichment scenario and therefore the birth environment of the Solar System

    Cryptic female choice favours sperm from major histocompatibility complex-dissimilar males

    Get PDF
    Cryptic female choice may enable polyandrous females to avoid inbreeding or bias offspring variability at key loci after mating. However, the role of these genetic benefits in cryptic female choice remains poorly understood. Female red junglefowl, Gallus gallus, bias sperm use in favour of unrelated males. Here, we experimentally investigate whether this bias is driven by relatedness per se, or by similarity at the major histocompatibility complex (MHC), genes central to vertebrate acquired immunity, where polymorphism is critical to an individual's ability to combat pathogens. Through experimentally controlled natural matings, we confirm that selection against related males' sperm occurs within the female reproductive tract but demonstrate that this is more accurately predicted by MHC similarity: controlling for relatedness per se, more sperm reached the eggs when partners were MHC-dissimilar. Importantly, this effect appeared largely owing to similarity at a single MHC locus (class I minor). Further, the effect of MHC similarity was lost following artificial insemination, suggesting that male phenotypic cues might be required for females to select sperm differentially. These results indicate that postmating mechanisms that reduce inbreeding may do so as a consequence of more specific strategies of cryptic female choice promoting MHC diversity in offspring

    Statistical comparison of InSAR tropospheric correction techniques

    Get PDF
    Correcting for tropospheric delays is one of the largest challenges facing the interferometric synthetic aperture radar (InSAR) community. Spatial and temporal variations in temperature, pressure, and relative humidity create tropospheric signals in InSAR data, masking smaller surface displacements due to tectonic or volcanic deformation. Correction methods using weather model data, GNSS and/or spectrometer data have been applied in the past, but are often limited by the spatial and temporal resolution of the auxiliary data. Alternatively a correction can be estimated from the interferometric phase by assuming a linear or a power-law relationship between the phase and topography. Typically the challenge lies in separating deformation from tropospheric phase signals. In this study we performed a statistical comparison of the state-of-the-art tropospheric corrections estimated from the MERIS and MODIS spectrometers, a low and high spatial-resolution weather model (ERA-I and WRF), and both the conventional linear and new power-law empirical methods. Our test-regions include Southern Mexico, Italy, and El Hierro. We find spectrometers give the largest reduction in tropospheric signal, but are limited to cloud-free and daylight acquisitions. We find a ~ 10–20% RMSE increase with increasing cloud cover consistent across methods. None of the other tropospheric correction methods consistently reduced tropospheric signals over different regions and times. We have released a new software package called TRAIN (Toolbox for Reducing Atmospheric InSAR Noise), which includes all these state-of-the-art correction methods. We recommend future developments should aim towards combining the different correction methods in an optimal manner

    Mass segregation in star clusters is not energy equipartition

    Get PDF
    Mass segregation in star clusters is often thought to indicate the onset of energy equipartition, where the most massive stars impart kinetic energy to the lower-mass stars and brown dwarfs/free floating planets. The predicted net result of this is that the centrally concentrated massive stars should have significantly lower velocities than fast-moving low-mass objects on the periphery of the cluster. We search for energy equipartition in initially spatially and kinematically substructured N-body simulations of star clusters with N = 1500 stars, evolved for 100 Myr. In clusters that show significant mass segregation we find no differences in the proper motions or radial velocities as a function of mass. The kinetic energies of all stars decrease as the clusters relax, but the kinetic energies of the most massive stars do not decrease faster than those of lower-mass stars. These results suggest that dynamical mass segregation -- which is observed in many star clusters -- is not a signature of energy equipartition from two-body relaxation

    Stereotactically guided breast biopsy: a review

    Get PDF
    The aims of this review are to compare and contrast the available stereotactic equipment, and to describe the variety of needle types used and their affect on pathological results and subsequent patient management. Initial stereotactic devices were “added-on” to analogue mammography units and have been replaced by prone or ducubitus equipment using digital image acquisition. Biopsies use either 14-G core biopsy (CB) needles or vacuum-assisted biopsies (VAB). Vacuum-assisted biopsy systems consistently out-perform 14-G CB with reduced need for diagnostic or multi-treatment surgery. The false-negative rate is 8% for 14-G CB compared with 0.7% for VAB. There is a risk of underestimating the disease present for lesions of uncertain malignant potential (Cat B3) and suspicious of malignancy (Cat B4) results with 25% of patients with a B3 biopsy found to have cancer at subsequent surgery and 66% of those with a B4 biopsy. A CB diagnosis of in situ malignancy is upgraded to invasive disease at surgery in 15-36% of patients undergoing CB and of the order of 10% with VAB. A high degree of diagnostic accuracy and hence safe patient care can only be achieved by meticulous attention to technique and multi-disciplinary cooperation
    corecore