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complex-dissimilar males

Hanne Løvlie1,2,†, Mark A. F. Gillingham1, Kirsty Worley1,3, Tommaso Pizzari1

and David S. Richardson3

1Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, UK
2Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
3School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK

Cryptic female choice may enable polyandrous females to avoid inbreeding

or bias offspring variability at key loci after mating. However, the role of

these genetic benefits in cryptic female choice remains poorly understood.

Female red junglefowl, Gallus gallus, bias sperm use in favour of unrelated

males. Here, we experimentally investigate whether this bias is driven by

relatedness per se, or by similarity at the major histocompatibility complex

(MHC), genes central to vertebrate acquired immunity, where polymor-

phism is critical to an individual’s ability to combat pathogens. Through

experimentally controlled natural matings, we confirm that selection against

related males’ sperm occurs within the female reproductive tract but demon-

strate that this is more accurately predicted by MHC similarity: controlling

for relatedness per se, more sperm reached the eggs when partners were

MHC-dissimilar. Importantly, this effect appeared largely owing to simi-

larity at a single MHC locus (class I minor). Further, the effect of MHC

similarity was lost following artificial insemination, suggesting that male

phenotypic cues might be required for females to select sperm differentially.

These results indicate that postmating mechanisms that reduce inbreeding

may do so as a consequence of more specific strategies of cryptic female

choice promoting MHC diversity in offspring.
1. Introduction
Offspring of genetically similar parents often suffer reduced fitness, either as a

result of inbreeding depression [1,2] or reduced genetic variation at specific loci

[3]. Loss of variation at key functional loci, such as those of the major histo-

compatibility complex (MHC), may be especially detrimental. The highly

polymorphic MHC genes encode antigen-presenting molecules that are central

to the vertebrate acquired immune response [4,5]. MHC class I genes are associ-

ated primarily with intracellular pathogens, whereas MHC class II genes

interact with extracellular pathogens [6]. Reduced diversity at these MHC loci

can therefore compromise an individual’s ability to combat pathogens [7–10],

and females should select partners to optimize the genetic diversity of their off-

spring [9–13]. However, female choice is often limited, for example because

multiple males are able to coerce a female into mating [14,15]. When this hap-

pens, females might be able to bias fertilization in favour of genetically

dissimilar males by using the ejaculates of individual partners differentially

during or after copulation, a process known as cryptic female choice [16–18].

In principle, cryptic female choice might allow optimization of offspring

MHC by biasing sperm use in response to the females’ MHC similarity to a

male [12,18–21]. However, this hypothesis remains little explored and empiri-

cally unresolved. Consistent with general expectations, some studies have

found evidence of fertilization bias promoting the MHC heterozygosity of
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offspring, favouring males that are either MHC-dissimilar to

the female [22,23] or those that are more MHC-heterozygous

[24–26]. However, other studies have failed to detect similar

effects [27] or found a bias for MHC-similar males [28,29].

Furthermore, cryptic female choice is notoriously difficult

to study owing to difficulties in controlling for precopulatory

mechanisms, disentangling male- from female-driven pro-

cesses, and distinguishing between differential sperm use

and differential zygote mortality as sources of paternity

bias [30,31]. Importantly, because genetic relatedness and

MHC similarity are often correlated [32,33], the relative

importance of these factors in strategies of cryptic female

choice has been particularly difficult to separate. Here, we

address these challenges and experimentally investigate the

relative roles of mate relatedness and mate similarity specifi-

cally at MHC loci in cryptic female choice in a population of

red junglefowl, Gallus gallus.

The red junglefowl, the wild ancestor of the domestic

chicken [34], offers an excellent opportunity to disentangle

the role of MHC similarity and genome-wide relatedness

in patterns of cryptic female choice. First, under the natural

conditions in which social groups live, females are polyan-

drous and have limited precopulatory control of mate

choice because the majority of copulations are forced on

females by males [35,36]. However, females can retain some

control of offspring paternity through cryptic female choice

[37–39]. Second, the minimal size of the MHC of domestic

chickens and red junglefowl, with the B-complex containing

just two class I loci and two class II loci, may have intensified

selection on these genes [40]. Clearer connections between

variation at these MHC loci and immune traits or pathogen

resistance have been made in the chicken than in virtually

any other animal [41,42]. For example, reduced MHC diver-

sity has been shown to increase susceptibility to pathogens

in chickens [43,44] and to result in increased pathogen-

induced mortality in the red junglefowl [10]. We would

therefore predict females to benefit from exerting MHC-

based cryptic female choice. Third, under natural conditions,

limited dispersal by both sexes results in a significant risk of

inbreeding [45,46]. Both males and females can discriminate

kin [38], although, consistent with theory [14,47,48], inbreed-

ing avoidance is weaker in males than in females. We have

previously shown that, when presented with the opportunity

to mate with a single female, males typically inseminate their

own full-sibling sisters rather than avoiding inbreeding [38].

Females, on the other hand, appear to reduce the risk of

inbreeding by selecting against the ejaculates of their brothers

after mating [38]. The functional significance of this pattern of

cryptic female choice remains unclear. One possibility is that

females bias sperm use directly in response to genetic related-

ness. However, an alternative hypothesis, suggested by the

often strong relationship between relatedness and MHC simi-

larity [32,33], is that cryptic female choice acts in response to

MHC similarity, and inbreeding avoidance is an outcome of a

more specific strategy based on MHC-based benefits.

In this study, we experimentally disentangle these fundamen-

tal mechanisms by taking advantage of an MHC-genotyped

population of red junglefowl [49,50] in which genetic relatedness

and MHC similarity are only weakly correlated (see Material and

methods). We first confirm the previously reported female

response to male relatedness following natural mating under

experimental conditions. We then introduce information on

MHC similarity between partners to test the extent to which
this bias is explained by genetic relatedness per se, and/or by

similarity specifically at the different MHC class I (BF1 and

BF2) and class II (BLB1 and BLB2) loci. Within this analysis, we

also assess the effect of the differentially expressed major and

minor loci (BF2, BLB2 versus BF1, BLB1, respectively; major

loci being the more dominantly expressed [44]). Finally, we

explore whether patterns of cryptic female choice observed

following natural mating are maintained following artificial

insemination when females are experimentally prevented from

gaining access to male phenotypic cues.
2. Material and methods
(a) Study population
Experiments were conducted in January–February 2005 and

March–April 2006 on a captive population of individually

marked red junglefowl at the Swedish Agricultural University,

Skara, Sweden (2005: nfemales ¼ 52, nmales ¼ 45; 2006: nfemales ¼ 35,

nmales ¼ 27). Birds were kept indoors under constant conditions

(12 L : 12 D cycle) and according to Swedish ethical legislations

(Gothenburg Ethical committee, permission number 192–2004).

Birds were admixed prior to the experiments, and the birds used

were pedigree-bred for two generations (for further details, see

[39]). Birds defined as ‘related’ were full-siblings in the pedigree,

and thus had 0.5 probability of sharing a gene identical by descent

in the past two generations (i.e. coefficient of relatedness, r ¼ 0.5).

‘Unrelated’ birds were less related than half-cousins in the pedigree

(r , 0.0625). An index of relatedness [51] based on allele similarity

across 13 microsatellite loci confirmed patterns of pairwise related-

ness (mean relatedness, r: 0.46+0.22 versus 20.047+0.056 for

‘related’ and ‘unrelated’ pairs, respectively).

Single-locus typing of both class I and class II MHC loci was

undertaken using primers developed from domestic chicken

[52,53] in combination with reference strand conformation analy-

sis (for detailed methods, see [49,50]). This method is able to

resolve all the sequences identified in this population of red

junglefowl [49]. Compared with other vertebrates, the MHC of

the fowl is simple and well understood [40,44], containing just

two MHC class I loci (BF1 and BF2) and two MHC class II loci

(BLB1 and BLB2) [40,54]. BF2 and BLB2 loci are termed ‘major

loci’, whereas BF1 and BLB1 are termed ‘minor loci’ because

the former are expressed 10 times more than the latter [44]. In

the study population, there are nine class I alleles (six major

and three minor) and 10 class II alleles (five major and six

minor including the one found in both class II loci). For further

details, see [10] (electronic supplementary material, figure S1).

All alleles identified represent unique amino acid sequences

[49]. MHC similarities between birds were calculated as 2x/n,

where x is the number of alleles shared between a male and a

female and ‘n’ is the total number of alleles present in the two

birds. We calculated proportion of alleles shared by the male

and female separately for (i) MHC class I major, (ii) MHC class

II major, (iii) MHC class I minor and (iv) MHC class II minor

loci, and (v) an index of overall MHC similarity (MHC alleles

shared across all four loci). In our study, relatedness and MHC

similarity between partnered birds were only weakly correlated

(Spearman correlation coefficients between different measures of

MHC similarity and relatedness ranged from rs ¼ 0.17 to 0.24,

ndyads ¼ 53). MHC similarity between partnered birds, calcula-

ted at different MHC loci (e.g. similarity at class I minor versus

class II major) were moderate to strongly correlated (Spearman,

rs ¼ 0.61–0.83, ndyads ¼ 53, among the different MHC loci).

Birds were separated at hatching and randomly assigned into

different groups visually isolated from each other (ngroups ¼ 4,

each with 12–18 individuals of mixed sex). Because prior social

familiarity might influence kin recognition [55] and trigger
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inbreeding avoidance responses [38], we blocked for social fam-

iliarity; both males that mated with a given individual were

either (i) socially familiar (i.e. raised together) or (ii) socially

unfamiliar (i.e. not previously met).

Between ejaculation, males were physically isolated from

females for at least 48 h to ensure replenishment of sperm

supplies, whereas females were isolated from males for at least

10 days to ensure depletion of stored sperm [56]. Birds were

sexually mature (more than eight months), and were 13–14

and 27–28 months old in 2005 and 2006, respectively, thus

within their sexual prime [57]. Experiments were run blind

with respect to genetic similarity and social familiarity between

individual birds.
 ocR
SocB

280:20131296
(b) Controlled natural mating experiment
This experiment allowed us to test the effect of relatedness and

MHC similarity between partners on the amount of sperm that

reached the females’ eggs while reducing female precopulatory

mate choice bias by allowing only predetermined, staged mat-

ings to occur. One female at a time was presented by H.L. to a

single male (thus reducing any potential ‘holder’ effects), facing

the male for 1 min, after which the female was turned around

and presented in a soliciting position for 20 min, or until the

male copulated twice with the female [38,50,58]. Each female

was behaviourally successfully copulated with, and inseminated

by, a related and an unrelated male on occasions separated in

time (a minimum of 10 days; nfemales ¼ 36, nmales ¼ 30). Females

were randomly assigned to copulate with a related or an unre-

lated male first. The egg laid on the first day after insemination

was discarded as this is ovulated before sperm could have ferti-

lized it [56,59]. For each egg laid over the following 10 days, we

measured the number of hydrolysis points on the outer perivitel-

line layer (PVL) of the yolk caused by individual live sperm cells

around the time of fertilization. In fowl, the probability that an

ovum is fertilized is a function of the number of sperm trapped

within the PVL [59]. Therefore, variation in the number of sperm-

induced hydrolysis points on eggs laid over successive days fol-

lowing an insemination provides an accurate measure of the

amount of sperm initially stored by a female, the rate at which

sperm were released from the sperm storage tubules, and the

probability of fertilization of individual eggs [59,60]. Further-

more, this measure is positively associated with number of

sperm inseminated [59,60], and the probability that a given

male fertilizes a female’s eggs, also under sperm competition

[61]. Being a continuous variable, this measure represents a

more sensitive measure of the competitive performance of an eja-

culate than binary data on the fertility or paternity of an egg. The

number of sperm-induced hydrolysis points on four successive

non-overlapping areas of the PVL centred around the blastodisc

were counted using a Leitz Wetzlar Ortolux microscope with a

Heine phase contrast condenser and 25� magnification, follow-

ing an established protocol [38,58,62]. The highest numbers of

hydrolysis points counted on eggs produced by a male–female

dyad (‘highest sperm number on eggs’) were used for further

analyses (see below). The analyses were restricted to the first

three eggs that contained sperm because polyandry under natu-

ral conditions would mean that the fertilization window for a

single copulation would only last for such a period of time

[62]. Counts of hydrolysis points on PVL follow not only a logar-

ithmic pattern of decline over time so the highest count is

typically restricted to eggs laid in the first few days following

insemination, but also providing an accurate approximation of

sperm retention throughout the trial [38,62]. Assessing sperm

use in this way, rather than calculating fertilization success of

competing males by genotyping offspring, enabled us test for

patterns of cryptic female choice without the confounding effect

of any postzygotic patterns (e.g. inbred/MHC-homozygous
embryos suffering higher mortality [30,63]). When the eggs of a

female no longer had any hydrolysis points, the female was then

inseminated by the opposite type of male (related or unrelated)

and hydrolysis points were counted again.

All copulations were video recorded with Sony Hi8Xr TRV66E

(2005) and Sony DCR VX-1000E (2006) cameras, focused on

the female cloaca. An ejaculate was considered ‘accepted’ when

either the ejaculate was observed entering the vagina through

contractions of the female cloaca or no semen was observed exiting

the female cloaca. An ejaculate was considered ‘ejected’ when

semen was observed exiting the female cloaca following cloacal

contact between the male and the female, following an established

protocol of demonstrated repeatability [39].

(c) Allocation trials
Because differential sperm allocation could potentially explain vari-

ation in the number of sperm found on eggs, a set of ‘allocation

trials’ was performed to quantify sperm allocation from specific

males to specific females. In a replicated set of matings, the focal

males were allowed to copulate with the same female (as for the

controlled natural mating experiment) on a separate mating

occasion (minimum 10 days apart). During these copulations,

females were fitted with harnesses preventing insemination and

facilitating ejaculate collection [38,50,58]. Ejaculates were collec-

ted and measured to the nearest 1 ml with a Gilson pipette

and sperm numbers were calculated according to the previous

study [64]. The amount of sperm allocated by a male to a female

(‘ejaculate sperm number’) during the allocation trials was included

as a variable in the analyses of controlled natural mating for the

same dyad (see ‘Statistical analyses’).

(d) Artificial insemination experiment
To investigate whether precopulatory phenotypic cues could

influence the number of sperm found on eggs, we conducted

an experiment where ejaculates were inseminated artificially.

A semen sample was obtained from a male by abdominal mas-

sage [56], homogenized and equal volumes inseminated

approximately 2 cm into the vagina from the cloaca (prior to

the sperm storage tubules) of two females; one being ‘related’

and one ‘unrelated’ to the male (nfemales ¼ 33, nmales ¼ 21). The

total volume obtained was inseminated, with volumes varying

across females from 65 to 150 ml, which is within the range of eja-

culate volume obtained in natural copulations in this study

(mean+ s.e.: 120.9+ 9.4 ml, median: 96.5 ml). No ejection of eja-

culates after artificial insemination was observed. The number of

sperm-induced hydrolysis points on the PVL of eggs, produced

in the following 10 days, was counted as described for the

‘controlled natural mating’ experiment (see above).

(e) Statistical analyses
(i) Genetic similarity
Only one measure of MHC similarity was entered in a statistical

model at a time owing to moderate to high correlation between

MHC measures (see ‘Study population’, above). But because

relatedness was only weakly correlated with MHC similarity,

both relatedness and one measure of MHC similarity were

entered in the same model. We then compared the explanatory

power of models, each including one of the five MHC measures.

(ii) Social familiarity
Because social familiarity between females and sperm donors was

not correlated with relatedness or MHC similarity (Spearman, rs,

range: 0.01–0.17, ndyads ¼ 53), and the ‘highest sperm number on

eggs’ between females mated with unfamiliar or familiar males

did not differ (Mann–Whitney U-test, Z ¼ 20.27, p ¼ 0.78), we
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Figure 1. The relationship between extent of sperm retention in female red
junglefowl and relatedness between partners, following insemination in the
controlled natural mating experiment. Females retained more sperm (‘highest
sperm number on eggs, all clutches’) following insemination by unrelated
partners (grey column, ‘unrelated’ partners were less related than half-cousins
in the pedigree) compared with insemination by related males (striped
column, ‘related’ partners were full-siblings in the pedigree; table 1a).
Data are presented as +s.e.m. and include females that produced clutches
both with and without sperm (nclutches ¼ 53, nfemales ¼ 30).
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pooled data from the trials conducted with familiar or unfamiliar

birds for further analyses.

(iii) Female sperm retention
For the controlled natural mating we conducted three analyses,

and for the artificial insemination experiments two analyses,

investigating variation in female sperm retention using general-

ized linear mixed models (GLMM).

First, we investigated overall patterns of differential female

sperm retention by analysing variation in ‘highest sperm number

on eggs, all clutches’ including all clutches (i.e. with or without

sperm; see below). We used a GLMM with a Poisson error distri-

bution, ‘relatedness’ and ‘oviposition day’ (i.e. day 1–3 when the

egg was laid), and MHC similarity as categorical effects. An

additional covariate ‘ejaculate sperm number’ (i.e. the number of

sperm inseminated by the same male to the same female, in ‘allo-

cation trials’) was entered. ‘Female identity’ and ‘male identity’

were entered as random effects in the analyses.

We then conducted two separate analyses to further investi-

gate patterns of female sperm retention and avoid any potential

problem related to a zero-inflated Poisson distribution. We first

analysed variation in the risk that the female failed to store any

sperm from an insemination, as reflected by the presence or com-

plete absence of sperm-induced PVL hydrolysis points on any of

the eggs produced by a female during a trial (‘sperm absence’).

Second, we restricted our analysis to trials that resulted in

PVL hydrolysis points and analysed variation in sperm reaching

the eggs by comparing the highest sperm number counted on an

individual egg across trials. The effect of ‘relatedness’ and MHC

similarity between partners on the likelihood of ‘sperm absence’

was analysed with a Binomial error distribution. Variation in the

‘highest sperm number on eggs’ had a Poisson error distribution.

‘Oviposition day’ was entered into models of ‘highest sperm

number on eggs’ because the day with the highest sperm num-

ber differed slightly between individual females, but not into

‘sperm absence’ analyses because only one value was entered per

female–male combination in these models. The models were other-

wise built as described above. In the artificial insemination

experiments, the total volume of each ejaculate was inseminated,

thus sperm number could not be calculated. ‘Ejaculate volume’

was entered as a continuous covariate, instead of ‘ejaculate sperm

number’ (as for the controlled natural mating experiment), in

these analyses. However, to control for variation in ‘ejaculate

volume’, analyses of variation in sperm use following artifi-

cial insemination were conducted by nesting ‘female identity’ in

‘male identity’.

The number of females and males varies in the analyses of

the different responses and experiments depending on whether

females laid eggs and whether these eggs contained sperm.

In the controlled natural mating experiment, ‘highest sperm

number on eggs, all clutches’ and ‘sperm absence’: nclutches ¼

53, nfemales ¼ 30 and nmales ¼ 25, for the ‘highest sperm number

on eggs’: nclutches ¼ 33 (thus excluding clutches with no sperm,

nclutches ¼ 20), nfemales ¼ 29, nmales ¼ 22. In the artificial insemina-

tion experiment, ‘sperm absence’: nclutches ¼ 43, nfemales ¼ 30 and

nmales ¼ 21, ‘highest sperm number on eggs’: nclutches ¼ 33 (thus

excluding clutches with no sperm, nclutches¼ 10), nfemales¼ 25 and

nmales¼ 19.

Model selection is a common analytical approach used to

choose models that best fit the data [65] and allows comparison

of alternative models with correlated parameters that can cause

problems with collinearity if included in a single model. We con-

ducted model selection based on Akaike information criterion

(AIC) values. AICc values (corrected for small sample sizes

with greater penalty for extra parameters) and AIC weights (v)

were obtained using MuMIn in R, compared within each exper-

iment and response variables analysed. Lower AICc values and

higher v values imply a better goodness of fit of models,
and thus a better ability to explain variation in the data. Accepted

convention is that models where the change in AICc compared

with best-ranking model is less than 2 (DAICc , 2) are equivalent

(and all such equivalent ‘best models’ are presented in the results

below), whereas models with DAICc . 2 are less supported [65]

(and thus not shown). AICv is used to assess the relative support

for models, while the sum of AICv for each variable occurring

in the supported models (
P

AICv, obtained for all models with

cumulative weight 0.95; electronic supplementary material,

table S1) gives the relative importance of that variable [65].

(iv) Male differential sperm allocation
Variation in male sperm allocation (‘ejaculate sperm number’,

transformed to obtain normality by subtracting the population

mean and dividing by the population standard deviation) was

investigated through separate GLMMs with Gaussian error distri-

bution, entering ‘relatedness’, ‘social familiarity’ or one of the

different measures of ‘MHC similarity’ as factorial effects, and

including ‘male identity’ and ‘female identity’ as random effects.

(v) Female ejaculate ejection
Female ejaculate ejection was observed in 16 out of 37 mating

trials. The probability of ‘female ejaculate ejection’ was investiga-

ted through separate GLMMs with Binomial error distribution,

entering ‘relatedness’, ‘social familiarity’ or one of the measures

of ‘MHC similarity’ as a factorial effect, or ‘ejaculate sperm

number’ as a continuous effect, and including ‘male identity’

and ‘female identity’ as random effects.

All analyses were performed in R 2.10.1.
3. Results
In the controlled natural mating experiment, females produced

eggs with fewer sperm after mating with a related male, than

the following mating with an unrelated male (figure 1 and

table 1a). Further investigating the relative role of genetic relat-

edness per se and MHC similarity, we found that models

including similarity at MHC class I minor, and MHC class I

minor together with genetic relatedness, were a much better

explanation of the data than models including relatedness
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Table 1. Selection of models explaining variation in female sperm
retention. (a) ‘Highest sperm number on eggs, all clutches’, including both
trials with and without clutches with sperm, (b) probability of female
sperm retention (i.e. ‘sperm absence’—whether females laid clutches with
sperm or not) and (c) extent of female sperm retention (i.e. ‘highest sperm
number on eggs’—excluding females that laid clutches without sperm)
after (i) ‘controlled natural mating’ and (ii) ‘artificial insemination’. Models
are ranked according to their AICc value and weight (v), where lower AICc
values and higher v values imply a better goodness of fit of models.
Accepted convention is that models that have a change in AICc compared
with best-ranking model (DAICc) of less than 2 are equivalent, whereas
models with DAICc . 2 are less supported (and therefore not presented
here). ‘Null models’ only contain random effects. For comparisons, ‘null
models’ and models with ‘relatedness’ are shown in the table even when
DAICc . 2. The relative importance of variables occurring in the best
supported models (

P
AICv) is presented in the electronic supplementary

materials, table S1. Terms initially included in the models were:
relatedness, MHC similarity (one of MHC class I minor, MHC class I major,
MHC class II minor, MHC class II major, MHC overall similarity), oviposition
day (the day the egg was laid that had the highest sperm number, for
(a,c)), ejaculate volume (for artificial insemination) and ejaculate sperm
number (for controlled natural mating), together with female identity and
male identity.

model AICc DAICc v

(a) highest sperm number on eggs, all clutches

(i) controlled natural mating

(1) MHC class I

minor þ relatedness

192.80 0 0.50

(2) MHC class I minor 193.63 0.82 0.33

(3) relatedness 249.05 56.25 0

(4) null model 308.39 115.59 0

(b) sperm absence

(i) controlled natural mating

(1) relatedness 75.71 0 0.56

(2) null model 76.73 1.02 0.33

(ii) artificial insemination

(1) null model 34.20 0 0.63

(2) relatedness 36.67 2.47 0.18

(c) highest sperm number on eggs (only clutches with sperm)

(i) controlled natural mating

(1) MHC class I minor 125.95 0 0.41

(2) relatedness 131.73 5.77 0.02

(3) null model 133.67 7.72 0.01

(ii) artificial insemination

(1) null model 96.58 0 0.45

(2) MHC class 1 minor 98.29 1.71 0.19

(3) relatedness 99.08 2.50 0.13
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Figure 2. The relationship between extent of sperm retention (i.e. ‘highest
sperm number on eggs’, only including clutches with sperm) for red jungle-
fowl females that retained sperm (i.e. only including clutches with sperm;
table 1c) after ‘controlled natural mating’ ( filled diamonds) and ‘artificial
insemination’ (open squares), and similarity between partners at the MHC
class I minor locus (‘low’ similarity ¼ 0, ‘intermediate’ similarity ¼ 0.50 –
0.67, ‘high’ similarity ¼ 1; ‘controlled natural mating’: nclutches ¼ 6, 20, 7,
respectively; ‘artificial insemination’: nclutches ¼ 6, 17, 10, respectively).
Data are represented as +s.e.m. Controlled natural mating: nclutches ¼ 33,
nfemales ¼ 29; artificial insemination: nclutches ¼ 33, nfemales ¼ 25.
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alone or including similarity at any of the other MHC loci or

overall MHC similarity (table 1a; electronic supplementary

material, table S1).

We found no evidence that failure to transfer and/or

store sperm was predicted by relatedness or MHC similarity

(table 1b). In the more parsimonious analysis eliminating
trials with such failures, we found that similarity at the MHC

class I minor locus alone best explained the variation in

the amount of sperm found on eggs (figure 2 and table 1c;

electronic supplementary material, table S1), providing a

substantially better explanation than any models that inclu-

ded relatedness or MHC similarity (table 1c; electronic

supplementary material, table S1).

We found no evidence that males in this experiment biased

sperm investment in favour of unrelated or MHC-dissimilar

females (table 2a; the tendency towards an effect of MHC

class II major locus is further weakened by correction for

multiple testing).

Female ejaculate ejection was not predicted by the genetic

relatedness or MHC similarity between a female and a male

(table 2b).

Following artificial insemination, we detected no effect of

either MHC similarity or genetic relatedness on the prob-

ability that any sperm reached the eggs (table 1b). Similarly,

models including MHC similarity or relatedness did not pre-

dict variation in the number of sperm found in clutches with

sperm presence following artificial insemination any better

than the null model (table 1c).
4. Discussion
In the red junglefowl, we found that variation in failure to

transfer and/or store sperm was not predicted by relatedness

or overall MHC similarity among partners following natural

copulations. However, females did bias subsequent sperm

use in response to genetic relatedness among partners, with

more sperm reaching eggs after mating with males that

were dissimilar at the MHC class I minor locus. This bias

was not explained by male differential sperm allocation or

female ejaculate ejection. Intriguingly, this bias was no

longer detected following artificial insemination.

A bias in the number of sperm found on the PVL of eggs

might, in principle, be owing to differential sperm allocation

http://rspb.royalsocietypublishing.org/
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Table 2. Parameters potentially affecting (a) ‘ejaculate sperm number’
(i.e. sperm numbers allocated by focal males to females) and (b) probability of
‘female ejaculate ejection’ by red junglefowl, during controlled natural mating.
No variables remained significant after correction for multiple testing.

parameter x2 p

(a) ejaculate sperm number

relatedness 1.57 0.21

MHC overall similarity 15.89 0.10

MHC class I minor 0.51 0.92

MHC class I major 0.67 0.88

MHC class II minor 1.69 0.64

MHC class II major 7.32 0.06

social familiarity 4.07 0.04

(b) female ejaculate ejection

relatedness 1.67 0.20

MHC overall similarity 5.33 0.87

MHC class I minor 2.15 0.54

MHC class I major 2.75 0.43

MHC class II minor 2.21 0.53

MHC class II major 1.88 0.60

social familiarity 2.52 0.11

ejaculate sperm number 5.60 0.02
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by males in response to relatedness [38] or MHC similarity

[50]. However, in experimental mating trials, we found no

evidence that males biased sperm investment in favour of

unrelated or MHC-dissimilar females. This strongly suggests

that our results are owing to an active bias in sperm selection

driven by females and confirms earlier observations of cryp-

tic female choice in this population [38]. One mechanism of

cryptic female choice that is well documented in this species

is differential ejaculate ejection through cloacal contractions

immediately after mating [37,39]. This mechanism was

suggested to underpin the detected female bias against

sperm inseminated by related males found in a previous

study [38]. However, we found no evidence that female

ejaculate ejection was predicted by male–female genetic relat-

edness or MHC similarity. It is therefore likely that the

observed cryptic female choice in favour of MHC-dissimilar

males is owing to physiological processes governing the

fate of spermatozoa beyond the female cloaca, for example

through differential sperm retention in the female sperm

storage tubules [66,67]. Such female-driven physiological pro-

cesses might be triggered either by the recognition of the

MHC similarity of an ejaculate within the female oviduct,

or by the female perception of MHC similarity based on

phenotype of the mating male.

In an attempt to reveal which cues trigger the MHC-depen-

dent cryptic female choice observed, we performed an artificial

insemination experiment in which female responses to male

mating behaviour and phenotypic cues are entirely removed.

If females require exposure to a male in order to bias sperm

use in favour of MHC-dissimilar partners, artificial insemina-

tion should weaken or altogether eliminate the bias in female

sperm use. Consistent with this prediction, we detected no
bias in the number of sperm on the egg PVL following artificial

insemination. These results indicate that the observed sperm

bias towards sperm of MHC-dissimilar males in natural

copulations was lost following artificial insemination.

The possibility that females cryptically bias sperm use to

either avoid inbreeding or optimize offspring MHC diversity

has attracted intense research interest [12,19,21]. However,

results have been rather ambiguous; while some studies

found evidence of cryptic female choice to avoid inbreeding

[68,69], others have failed to find such effects [70–72]. Studies

showing an effect of the MHC on postcopulatory prezygotic

processes are scarce, and the mechanisms underlying the

observed biases are unknown. In Arctic charr, Salvelinus
alpinus, MHC-heterozygous males gained more fertilizations

when in competition with MHC-homozygous males [26]. By

contrast, in Atlantic salmon, Salmo salar, males gained more

fertilizations when they were similar (rather than dissimilar)

at MHC class I loci [28]. Cryptic female choice in externally

fertilizing species like these is likely to be limited to

sperm–egg interactions owing to a lack of internal interaction

with the female. Studies of MHC-dependent effects in

internal fertilizers are even scarcer. In mice, Mus musculus,

Wedekind et al. [73] observed non-random production of

blastocysts in vitro, biased towards MHC heterozygosity.

Furthermore, MHC-heterozygous parents produced more

heterozygous embryos than expected when infected with

mouse hepatitis virus [74]. Selective sperm–egg interaction

was suggested as a potential mechanism explaining these

biases [73,74]. Importantly, in most studies it has been

difficult to disentangle the possible independent effects of

genome-wide relatedness and MHC similarity—two vari-

ables that are often closely correlated [32,33]. Therefore,

another unresolved question is the extent to which such

female choice functions solely as a means of inbreeding

avoidance or if it is driven by the genetic benefits associated

with MHC heterozygosity above and beyond avoiding the

deleterious effects of inbreeding. Recent studies of red jungle-

fowl and domestic breeds represent a typical case in point.

Studies reported evidence of cryptic female choice against

inbreeding in female red junglefowl [38] and cryptic female

choice owing to genetic compatibility between different

breeds of domestic fowl [63]. However, the role of MHC

similarity in these responses was unknown despite recent

demonstrations that MHC heterozygosity can affect sexual

selection and survival in the red junglefowl [10,50]. The pre-

sent results not only confirm previous evidence showing that

cryptic female choice reduces the risk of inbreeding in this

species [38], but also reveal that this is achieved by a more

focused female postcopulatory bias in favour of dissimilarity

at specific MHC loci.

Both natural and artificial insemination is known to

trigger immune response in the female reproductive tract

in domestic fowl [67], indicating a possible route through

which the MHC may mediate sperm selection. However,

our results show that the cryptic female responses to genetic

similarity observed after natural copulations disappear after

artificial insemination, possibly owing to a lack of male

stimuli. Previous artificial insemination studies in birds

have failed to find evidence of cryptic female choice in

response to relatedness [72]. A possible explanation for this

is that female selective barriers might need to be activated

by the female’s perception of male phenotypic cues, which

are removed in artificial insemination. That male phenotypic
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cues are important in female reproductive decisions is well

known [75,76]. Nevertheless, our study is the first to indicate

that a direct link between the absence of precopulatory male

cues and a loss of postcopulatory female discrimination

might occur. This interpretation requires a degree of caution.

Alternative explanations for the lack of cryptic female choice

following artificial insemination include the possibility that

semen samples collected from abdominal massage from the

males might differ in some way from natural ejaculates

(e.g. the absence of specific seminal factors), and thus prevent

cryptic female choice. Similarly, it is possible that the process of

artificial intromission of the ejaculate might bypass sperm bar-

riers in the very first section of the female vagina. At present,

these alternative hypotheses appear unlikely as neither is corro-

borated by what we currently know about the reproductive

physiology of the fowl.

Surprisingly, the MHC effect observed in our study

appears to be mediated by a single specific locus (out of the

four MHC loci present in fowl). MHC variables were moder-

ately to highly intercorrelated in our dataset, thus it is

difficult to fully separate the effects of the independent loci.

Nevertheless, we consistently find that similarity at a single

MHC locus (class I minor locus) predicts a bias in female

sperm use, but similarity at the other MHC loci (or across

all pooled loci) does not. This finding may shed light on

the functions of different MHC loci. In fowl, minor loci are

expressed 10-fold less than major loci and are suggested to

play a limited role in antigen presentation [44]. Moreover,

it has been suggested that the MHC class I minor locus

may have alternative, more specific functions than identifying
pathogens [40,44]. Indeed, our results demonstrate that test-

ing the effect of the MHC across pooled loci may miss the

more complex processes occurring as a result of variation at

individual MHC loci [77].

In conclusion, we demonstrate that in the red junglefowl,

MHC-dissimilarity between partners, specifically at the MHC

class I minor locus, explains a bias in female sperm use after

copulation. Our results indicate that female-driven biases in

sperm use are complex and may integrate responses both to

relatedness per se and to MHC similarity. We suggest that

future research should focus on exploring the exact cues

and mechanisms of cryptic female choice, and the adaptive

function of fertilization biases mediated by specific MHC loci.
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