1,761 research outputs found

    Carbon storage and DNA absorption in allophanic soils and paleosols

    Get PDF
    Andisols and andic paleosols dominated by the nanocrystalline mineral allophane sequester large amounts of carbon (C), attributable mainly to its chemical bonding with charged hydroxyl groups on the surface of allophane together with its physical protection in nanopores within and between allophane nanoaggregates. C near-edge X-ray absorption fine structure (NEXAFS) spectra for a New Zealand Andisol (Tirau series) showed that the organic matter (OM) mainly comprises quinonic, aromatic, aliphatic, and carboxylic C. In different buried horizons from several other Andisols, C contents varied but the C species were similar, attributable to pedogenic processes operating during developmental upbuilding, downward leaching, or both. The presence of OM in natural allophanic soils weakened the adsorption of DNA on clay; an adsorption isotherm experiment involving humic acid (HA) showed that HA-free synthetic allophane adsorbed seven times more DNA than HA-rich synthetic allophane. Phosphorus X-ray absorption near-edge structure (XANES) spectra for salmonsperm DNA and DNA-clay complexes indicated that DNA was bound to the allophane clay through the phosphate group, but it is not clear if DNA was chemically bound to the surface of the allophane or to OM, or both. We plan more experiments to investigate interactions among DNA, allophane (natural and synthetic), and OM. Because DNA shows a high affinity to allophane, we are studying the potential to reconstruct late Quaternary palaeoenvironments by attempting to extract and characterise ancient DNA from allophanic paleosol

    Using induced pluripotent stem cells to understand retinal ciliopathy disease mechanisms and develop therapies

    Get PDF
    The photoreceptor cells in the retina have a highly specialised sensory cilium, the outer segment (OS), which is important for detecting light. Mutations in cilia-related genes often result in retinal degeneration. The ability to reprogramme human cells into induced pluripotent stem cells and then differentiate them into a wide range of different cell types has revolutionised our ability to study human disease. To date, however, the challenge of producing fully differentiated photoreceptors in vitro has limited the application of this technology in studying retinal degeneration. In this review, we will discuss recent advances in stem cell technology and photoreceptor differentiation. In particular, the development of photoreceptors with rudimentary OS that can be used to understand disease mechanisms and as an important model to test potential new therapies for inherited retinal ciliopathies

    Rice growth under water stress levels imposedat distinct developmental stages.

    Get PDF
    Made available in DSpace on 2017-10-18T09:30:45Z (GMT). No. of bitstreams: 1 GermaniConcenco11RCAV40n32017v2.pdf: 4312933 bytes, checksum: c932e8c978a062f22e625c49676c7092 (MD5) Previous issue date: 2017-10-17bitstream/item/165182/1/Germani-Concenco-11-RCA-V40-n3-2017-v2.pd

    Diversity and complexity: becoming a teacher in England in 2015-16

    Get PDF
    This paper is based on a profile of Initial Teacher Training (ITT) provision in England, which was developed as part of a wider research programme on Diversity in Teacher Education (DiTE) based at Bath Spa University (Whiting et al, 2016). It provides a new topography of routes to qualified teacher status (QTS) in England for the academic year 2015-16, along similar lines to an exercise undertaken for an earlier research programme, the ESRC funded Modes of Teacher Education (MOTE) projects conducted in the 1990s (Barrett et al, 1992; Whiting et al, 1996; Furlong et al, 2000). The allocations and census data published by the National College for Teaching and Leadership (NCTL) provide the basis for this new topography, with additional material from a range of sources, mostly online. Reflections on further changes in policy discourse since the year of analysis hint at an acknowledgement of the role of Higher Education (HE) and a reduced emphasis on the much vaunted focus on ‘school-led’ routes. However, there is little to reassure either ITT providers, or potential candidates, of a long term plan aimed at halting the trajectory towards over-complexity and incoherence. The analysis raises important questions about the quality of such diverse teacher education provision, the nature of partnership between higher education institutions and schools, and the impact of reform on the identities of those training to teach

    Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules

    Get PDF
    The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field.ope

    Excavations at the Lower Palaeolithic Site at Elveden, Suffolk

    Get PDF
    The Lower Palaeolithic site at Elveden, Suffolk, was the subject of new excavations from 1995–1999. Excavations around the edge and in the centre of the former clay-pit revealed sediments infilling a lake basin that had formed in Lowestoft till, overlying Chalk, the till being attributed to the Anglian glaciation (MIS 12). The lake sediments contain pollen that can be assigned to pollen zones HoI and HoIIa of the early Hoxnian (MIS 11). Overlying grey clays contain ostracods, molluscs, vertebrates, and carbonate concretions. Together they are indicative of a fluvial environment in a temperate climate. AAR ratios (amino acid racemisation) on the molluscs also suggest correlation with MIS 11. Further indications of a fluvial context are indicated by thin spreads of lag gravel along opposite sides of the clay-pit, marking the edges of a channel. The gravel forms the raw material for the human industries which consist of handaxes, flake tools, flakes, and cores. Further artefacts are found in the overlying black clay, which is interpreted as a palaeosol that formed with the silting-up of the channel. The basin was further infilled with colluvial ‘brickearths’, which also contain artefacts that are probably derived from the underlying gravel. Further evidence of soil formation was identified in the ‘brickearth’. Coversands with periglacial involutions overlie the ‘brickearth’ at the top of the sequence. These probably formed in the last cold stage, the Devensian

    The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation

    Get PDF
    Background: Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To evaluate the contribution of clock components in this process, we investigated mice mutant in clock genes for a bone volume phenotype. Methodology/Principal Findings: We found that Per2Brdm1 mutant mice as well as mice lacking Cry2-/- displayed significantly increased bone volume at 12 weeks of age, when bone turnover is high. Per2Brdm1 mutant mice showed alterations in parameters specific for osteoblasts whereas mice lacking Cry2-/- displayed changes in osteoclast specific parameters. Interestingly, inactivation of both Per2 and Cry2 genes leads to normal bone volume as observed in wild type animals. Importantly, osteoclast parameters affected due to the lack of Cry2, remained at the level seen in the Cry2-/- mutants despite the simultaneous inactivation of Per2. Conclusions/Significance: This indicates that Cry2 and Per2 affect distinct pathways in the regulation of bone volume with Cry2 influencing mostly the osteoclastic cellular component of bone and Per2 acting on osteoblast parameters

    Biologic TNF-α Inhibitors Reduce Microgliosis, Neuronal Loss, and Tau Phosphorylation in a Transgenic Mouse Model of Tauopathy

    Get PDF
    Background Tumor necrosis factor-α (TNF-α) plays a central role in Alzheimer’s disease (AD) pathology, making biologic TNF-α inhibitors (TNFIs), including etanercept, viable therapeutics for AD. The protective effects of biologic TNFIs on AD hallmark pathology (Aβ deposition and tau pathology) have been demonstrated. However, the effects of biologic TNFIs on Aβ-independent tau pathology have not been reported. Existing biologic TNFIs do not cross the blood–brain barrier (BBB), therefore we engineered a BBB-penetrating biologic TNFI by fusing the extracellular domain of the type-II human TNF-α receptor (TNFR) to a transferrin receptor antibody (TfRMAb) that ferries the TNFR into the brain via receptor-mediated transcytosis. The present study aimed to investigate the effects of TfRMAb-TNFR (BBB-penetrating TNFI) and etanercept (non-BBB-penetrating TNFI) in the PS19 transgenic mouse model of tauopathy. Methods Six-month-old male and female PS19 mice were injected intraperitoneally with saline (n = 12), TfRMAb-TNFR (1.75 mg/kg, n = 10) or etanercept (0.875 mg/kg, equimolar dose of TNFR, n = 10) 3 days/week for 8 weeks. Age-matched littermate wild-type mice served as additional controls. Blood was collected at baseline and 8 weeks for a complete blood count. Locomotion hyperactivity was assessed by the open-field paradigm. Brains were examined for phosphorylated tau lesions (Ser202, Thr205), microgliosis, and neuronal health. The plasma pharmacokinetics were evaluated following a single intraperitoneal injection of 0.875 mg/kg etanercept or 1.75 mg/kg TfRMAb-TNFR or 1.75 mg/kg chronic TfRMAb-TNFR dosing for 4 weeks. Results Etanercept significantly reduced phosphorylated tau and microgliosis in the PS19 mouse brains of both sexes, while TfRMAb-TNFR significantly reduced these parameters in the female PS19 mice. Both TfRMAb-TNFR and etanercept treatment improved neuronal health by significantly increasing PSD95 expression and attenuating hippocampal neuron loss in the PS19 mice. The locomotion hyperactivity in the male PS19 mice was suppressed by chronic etanercept treatment. Equimolar dosing resulted in eightfold lower plasma exposure of the TfRMAb-TNFR compared with etanercept. The hematological profiles remained largely stable following chronic biologic TNFI dosing except for a significant increase in platelets with etanercept. Conclusion Both TfRMAb-TNFR (BBB-penetrating) and non-BBB-penetrating (etanercept) biologic TNFIs showed therapeutic effects in the PS19 mouse model of tauopathy
    corecore