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Abstract 

Irradiation embrittlement of steel pressure vessels is an important consideration for the 

operation of current and future light water nuclear reactors. In this study we employ an 

ensemble of artificial neural networks in order to provide predictions of the embrittlement using 

two literature datasets, one based on US surveillance data and the second from the IVAR 

experiment. We use these networks to examine trends with input variables and to assess various 

literature models including compositional effects and the role of flux and temperature. Overall, 

the networks agree with the existing literature models and we comment on their more general 

use in predicting irradiation embrittlement.   
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1 Introduction 

The reactor pressure vessels of most modern light-water reactors are constructed from low 

alloy ferritic steel forgings and welds, as these offer a combination of high strength, high 

toughness and ease of fabrication in large sections [1]. These steels, however, suffer from 

irradiation embrittlement, where damage from neutrons from the reactor core causes the 

formation of many atomic-scale defects within the metal grains [2]. These defects impede the 

motion of dislocations, leading to an increase in the hardness and a reduction in ductility of the 

steel. During its lifetime the vessel therefore becomes progressively more susceptible to brittle 

failure. The failure of a reactor pressure vessel is unacceptable, and as the vessels are not 

replaceable, predicting the embrittlement of these steels is fundamental in ensuring the safe, 

continued operation of nuclear reactors. In severe cases, the embrittlement of the vessel may 

erode the safety margins against brittle failure to such an extent that it is no longer permissible 

to operate the reactor.  

A large quantity of data has been accumulated by the international community on 

irradiation-embrittled steels: in particular many international codes (including the US, French 

and Japanese industries [3–5]) mandate the use of pressure vessel surveillance samples that, 

once withdrawn and tested, provide an estimate of the likely embrittlement over time [4]. These 

data have been collated into several international datasets [6] and are supported by extensive 

test reactor programmes [7] which have seen steel samples irradiated under vastly accelerated 

test conditions in order to provide a wider range of compositions, test methods [8] and 

microstructural characterisation [9] than would be possible from the limited, multi-year 

surveillance data.  

In addition to the experimental programme, significant efforts have been made in order to 

develop a better understanding of these phenomena. These have approached the problem by 

incorporating physical understanding into existing models [10, 11], by developing a model on 
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sound reasoning and fitting the resulting parameters to data [12, 13], or by developing a model 

using solely modelling and simulation [14]. The preference for physical understanding over 

empiricism is fundamental in reducing risk and is reflected in the considerable research 

undertaken by the industry.  

Despite the significant improvements in physical modelling, there are still gaps in the 

understanding of irradiation damage in these steels which will persist for many years. For 

example, there is a current debate over the importance of Ni/Mn/Si precipitates which may 

form late-on in the lifetime of a reactor [15]; also, there is no universal agreement on how to 

use short-term surveillance datasets, obtained over only a few years, to the 40 or 60 year design 

lifetime of modern reactor vessels.  

The greatest challenge, however, is to identify a correlation between the various exposure 

parameters, of which there are many. One of the most important variables is irradiation 

temperature, and data have been collected on embrittlement in steels at many temperatures. 

However, taking these data and predicting the actual temperature-dependence of embrittlement 

in a particular steel is a non-trivial exercise because of the number of other input variables; and 

more seriously, that the temperature effect itself may vary with both the irradiation flux [16] 

and the composition of the steel (specifically there is substantial interest to investigate the 

dependence on Ni-content [17]). These problems are compounded by the high cost and long 

timescale of irradiated materials testing.  

Artificial neural networks (ANNs) [18] are powerful computational models based on 

empirical regression that can be used to learn dependencies or patterns existing in data. ANNs 

are generally constituted by layers of interconnected processing elements called neurons that 

replicate the functionality of a biological neuron. In training, the network coefficients, 

described as weights and biases, are optimised based on minimisation of an error function such 

as a ‘mean squared error’. A back-propagation algorithm [19] is commonly used for training, 
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which mostly relies on gradient descent techniques for optimisation of weights. A typical 

architecture for a neural network comprises a two layer perceptron where the input nodes are 

connected to the so-called “hidden layer” which is subsequently connected to the output. The 

input/output mapping is processed in each of the hidden neurons using the non-linear activation 

function.  

Previous work has shown the use of ANN to account for various measures of irradiation 

damage. For example they have been used to predict hardening and Charpy transition 

temperature shifts in irradiated steels [20, 21] at high values of fluence in support of the 

development of low activation steels. More recently, Castin and co-workers [22] have used 

ANNs to predict irradiation induced change in yield stress and examine the relative importance 

of different irradiation variables. This study shows the ability of the networks to make complex, 

subtle predictions of irradiation induced change from a relatively small database of irradiation 

damage results.   

In this study, we intend to improve the understanding of the role of critical input parameters 

such as flux, fluence, temperature and chemical composition on the irradiation-induced ductile-

to-brittle transition temperature shifts. Specifically we develop the ANNs to assess the effect 

of a single variable upon the embrittlement in the absence of any prior assumptions as to the 

functional form and compare the predictions with established physical models. We also use 

these models to examine the likely effects (or absence of effects) of irradiation parameters such 

as flux and temperature.  

This paper is organised as follows. In the method section we explain the form and structure 

of the artificial neural network and discuss the dataset used in the model, including the 

partitioning into the training and test datasets. In the results section, we show that the model is 

comparable with several current embrittlement trend curves; we also show estimates of the 

shift change in response to several input variables in order to provide support to several 

https://paperpile.com/c/eICqfl/2j8K+RA9f
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different physical models. In the discussion section, we provide a perspective on the use of 

these models to comment on several important current themes in irradiation damage and to 

provide a framework for the development of physically based models.  

 

2 Method 

2.1 Databases 

There is a wide range of data available in the international literature on pressure vessel 

steel embrittlement. For this paper we consider two separate datasets. The first is the IVAR 

data [23] from the Irradiation Variables Experiment led by Odette and co-workers. This is a 

dataset that looked at a wide range of different steel compositions under extremely well-

controlled temperature, flux and fluence conditions; however these data were collected in test 

reactor conditions using a significantly higher fast neutron flux than a normal pressurised water 

reactor vessel may experience. We have selected the CM-series alloys from these datasets as 

despite being split melt model steels the compositions bracketed those of traditional pressure 

vessel steels; the variable-stress-relief steels or more exotic compositions were not included. 

This restriction gave a total of 756 data within this set. The second dataset we consider comes 

from the US civil power database (NUREG) [6] and contains the accumulated experience from 

irradiated surveillance samples from US operators.   

The range of the database in terms of flux and fluence is shown in Figure 1. It is evident 

that although the datasets reach similar fluence values, the IVAR data is on average at higher 

flux than the NUREG data. For comparison, in this figure, two lines illustrate an approximate 

end of life fluence for a nuclear pressure vessel operating for 60 years, and the typical 

surveillance data assuming a lead-factor equal to four i.e. the ratio of neutron fluence rate at 

the capsule to the rate at the vessel inside surface. Data from the IVAR experiment are 

https://paperpile.com/c/eICqfl/cO57n
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measured in terms of change in proof strength. For ease of comparison between the two datasets 

and with other literature values, we have converted the measured values of proof strength into 

an effective shift in Charpy transition temperature, as measured in the NUREG database; the 

conversion factor used is 0.6°C/MPa.  

Temperature is an important variable determining the level of irradiation embrittlement of 

a material. All of the NUREG data have been collected at typical reactor operating temperatures 

between 275°C and 290°C; the IVAR data uses irradiations at three different temperatures: 

270°C, 290°C and 310°C. In Figure 2 the range of compositions included in the IVAR dataset 

is also illustrated.  

2.2 Artificial Neural Network (ANN) modelling  

ANNs are useful to identify highly-complex and non-linear relationships between the 

output and input data [24]. Prior knowledge on the correlation between the input variables and 

the output is generally not required to find pertinent solutions using the data. A feed-forward 

multi-layer perceptron (MLP) architecture [25] with one hidden layer was undertaken using 

the MATLAB neural network toolbox [26]. This architecture is chosen as it is well understood 

that MLPs have universal approximation capabilities [27]. A scaled conjugate gradient [28] 

training regime was implemented using a log-sigmoid transfer function in the hidden layer and 

linear transfer function in the output layer. The neurons in each layer are inter-connected to the 

neurons in the succeeding layer through a synaptic weight and bias. The net output z from the 

ANN can be expressed as, 

      (1)   

where wj is the weight matrix in output layer, wji the weight matrix in the hidden layer, b(1)
 

bias vector in the first layer, b(2) bias vector in the second layer, H number of hidden neurons 

https://paperpile.com/c/eICqfl/k6cJ0


and ai the input variables. 

Unlike traditional trend curves, ANNs can be used to specify a convoluted mapping 

pertaining to surveillance data without having any prior assumptions. Nevertheless, 

susceptibility to overfitting is one of the major drawbacks: i.e. when the network generalises 

poorly and fits the inherent noise in the data rather than the underlying pattern. The Bayesian 

approach [29] aims to avoid the phenomena of overfitting through marginalisation of network 

output by adding penalty terms to the error function thereby eliminating networks with 

implausibly large weights. The weights are initialised by assuming a Gaussian distribution 

having the mean centred at zero with one standard deviation. It is often beneficial to initialise 

weights with small random values to avoid premature saturation of the sigmoidal functions 

[30].  

The number of neurons in the hidden layer controls the complexity of the model, and use 

of over-complex models is not permissible in the Bayesian technique. It is also vital to have an 

unseen test dataset to evaluate the generalisation ability of the network: this is also known 

cross-validation [18]. The test dataset was created by randomly selecting samples from the 

experimental dataset. In order to optimise the number of hidden units, the network was trained 

using 5 to 20 and the moving average trendline of root mean square error (RMSE) was 

determined for the test and training datasets using: 

   (2) 

where t is the target value, z the output, M is the number of samples.  

The minimum RMSE error was first obtained for the training and test datasets with 11 

neurons (see Figure 3). The test error shows the generalisation ability of the neural network 

whereas the training error is a measure of fitting uncertainty in the data.  

A schematic of the network architecture is shown in Figure 4. The flux and fluence 

https://paperpile.com/c/eICqfl/7Y3Fb
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parameters were normalised in the range –1 to +1 primarily because of the magnitude being 

higher by several orders compared to other input variables, and to fully utilise the capability of 

the log-sigmoid transfer function. The functional form of fluence and flux parameters were 

optimised after evaluating the RMSE error during the training (see Table 1). The use of 

physically motivated parameters such as (flux)1/2 and (fluence)1/2 was found to reduce the 

scatter and RMSE error in the resulting ANN predictions. The generalisation ability of the 

network can also be enhanced by using an ensemble of networks and combining predictions 

formed from multiple networks [31]. Moreover, the training process is completed when the 

error function reaches a ‘minima’ and the danger of getting trapped in a local minimum is very 

likely. Committee networks initialised to random values of weights can be effectively used to 

tackle this problem. An ensemble of 250 networks was developed by running independent 

training sessions and the predictions were marginalised by using the Bayesian error function 

Es described in equation (3): 

                            (3) 

where β is the parameter controlling the variance in noise, α is the regularisation 

coefficient, w the weight vector, t the target value and z the output. The transition temperature 

shift is obtained from the mean of the marginalised set of predictions with error bars 

corresponding to ±1σ (standard deviation). The large error bars signify regions of sparse 

training data, lack of degrees of freedom to fit the desired input/output mapping, or the inherent 

noise existing in the input process parameter space [18].  

 

3 Results  

The overall quality of fit of the ANNs to the IVAR and NUREG databases is illustrated 

in Figure 5, showing both all of the available data and those reserved from the fitting process. 

https://paperpile.com/c/eICqfl/tBHHk


The ANNs overall reproduce the trends in the data, particularly considering the wide range of 

input variables. For comparison with previous work, we calculate the mean error in the M 

predictions, e, according to: 

1
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As estimates of the overall performance of the ANNs in reproducing the data. The calculated 

values converted into change in yield strength (for comparison with Castin and coworkers [22]) 

and the values are reproduced in Table 2. The IVAR predictions display a similar level of 

uncertainty to the previous work: The Castin data are fitted to the RADAMO database which, 

similar to the IVAR database, contains data from a test reactor with controlled values of flux, 

fluence, temperature and composition [32] and the total error and bias are similar. The NUREG 

data are more scattered. The uncertainty in the network predictions are a function of both the 

number of input variables and the distribution of data and therefore the greater scatter in the 

NUREG predictions are likely due to the lack of homogeneity in the variables from these data.   

In the section that follows, we discuss in turn the variation of embrittlement shift as a 

function of temperature and flux. Following this we discuss the effect of composition upon the 

magnitude of the shift. In the discussion section, we analyse further these data and compare 

them to various literature models of embrittlement shift.  

3.1 Irradiation Temperature Dependence 

The irradiation temperature has a significant effect on the level of embrittlement. 

Physically this is attributed to the effect of temperature on the balance between defect creation, 

migration, and annihilation. The NUREG database is based on surveillance data and has a 

https://paperpile.com/c/eICqfl/sUOA
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relatively small temperature range and therefore we exclude it from the analysis in this section. 

The IVAR database was deliberately targeted at investigating temperature ranges. Figure 6 

shows the predicted changes in irradiation embrittlement using a neural network fitted to this 

dataset. Overall, the level of irradiation embrittlement increases as the temperature decreases 

showing approximate linear dependence, and this is in good agreement with the current 

understanding of irradiation damage [33, 34].  

 Similar linear trends are observed for a wide range of steel compositions, in particular 

both high and low Cu (Figure 6(a)). In the EONY model, irradiation damage shift is attributed 

to two features, matrix damage (Cu < 0.072 wt. %) and both matrix damage and Cu-precipitate 

formation for (Cu > 0.072 wt. %). The data in Figure 6(a) show similar trends with temperature 

suggesting that the increase in embrittlement at lower temperature arises from a common 

decrease in solute solubility or an increase in the effectiveness of radiation-induced defects 

(e.g. vacancies and interstitials) in forming defects, rather than a change in the nature of the 

embrittlement features. This is based on the assumption that in a high-Cu steel the dominant 

hardening features are Cu precipitates and in a low-Cu steel they are matrix damage (e.g. 

interstitial loops formed during the irradiation cascades). 

3.2 Flux Dependence 

The dependence of irradiation embrittlement on the flux or dose rate is a complex and 

sometimes controversial topic [16]. It is important because high fluence data is crucial to 

justifying the long term operation of reactor pressure vessels but this often relies upon 

accelerated irradiations at high flux in order to generate the required fluences within a feasible 

timeframe. The argument for flux effects is that interstitial and vacancy pairs in high flux 

irradiations have increased rates of matrix recombination which results in a shorter average 

lifetime and therefore a lower overall mobility of solute atoms. This results in high flux 

irradiation having less total embrittlement due to solute clustering for a given fluence. The 

https://paperpile.com/c/eICqfl/UIynO+Q7QC
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argument is based on sound physical reasoning (for example rate theory modelling of defect 

survival rates [35]) but whether this provides a significant effect in complex steel irradiations 

depends upon the temperature of the irradiation, the nature of the embrittling features and the 

composition of the steel.  

In high Cu steels, low fluence irradiations show a flux effect as the decreased vacancy 

survival lifetimes lead to a delay in the formation of Cu precipitates; in high fluence, high Cu 

steels there is little or no flux effect as all of the matrix Cu has been incorporated into 

precipitates and the lower diffusivity has no longer any effect [35]. In low Cu steels, there is a 

lack of consensus on flux effects which mirrors the lack of certainty as to the importance of 

solute clustering in their evolution. The EONY model and the analysis of the IVAR database 

both concluded that flux effects were present (and displayed similar trends) in low-flux 

surveillance data (φ~1×108-1×1010 n/cm2s-1) and in the IVAR dataset (φ~1×1011-1×1012 

n/cm2s-1) [12] and other researchers have adopted similar factors [36]. However other 

researchers have not found supporting evidence for flux or dose rate effects in low Cu steels in 

their surveillance data or in targeted high flux irradiations on specific materials [37].  

The most common method of compensating for a flux effect (if present) is to ascribe an 

effective fluence: 

  (4) 

Where  tr is an arbitrary reference fluence and Q ( ) is a scaling factor. The effective fluence 

can then be used in an embrittlement trend curve that does not vary with flux. Using this method 

may give significant improvement in the quality of fit of a given trend curve. 

 To calculate the value of Q as a function of flux we concentrate on low Cu steels and 

assume that the embrittlement follows a square-root dependence on the fluence, i.e. the 
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embrittlement follows a trend: 

   (5) 

Where A is a parameter incorporating the material, flux and temperature sensitivity of the 

steel. This assumption is consistent to the functional form of fluence used to train the ANN 

(see Table 1) and, unlike analytical functions, ANN in its present form cannot be used to 

calculate the fluence required to reach a given shift value. 

The effective fluence can be linked to the reference fluence at a reference flux and the 

square of the ratio of the embrittlement at this reference fluence at the two fluxes:  

  (6) 

Therefore we can evaluate the approximate acceleration factor Q ( ) through calculating this 

ratio as a function of flux.  

The NUREG database contains mainly lower flux surveillance data. Analysis of this 

dataset using the ANNs reveals an effect of flux but not one that is significant given the 

uncertainty in the predictions. We illustrate the trends for low Cu, low and high Ni steels in 

Figure 7(a) where it can be seen that the shift drops over the flux range considered but the error 

bars on the predictions do not support a significant effect. We show in Figure 7(b) the same 

data converted into an acceleration factor.  

 The IVAR database has been used to make predictions of irradiation shift at higher flux 

values between 1×1011 and 1×1012 n/cm2s-1. These data show more evident flux effects. Figure 

8(a) and (b) shows predicted embrittlement shifts for low Cu, high and low Ni steels and a high 

Cu, high Ni steel. The steels all show a drop in the predicted embrittlement as the flux is 

increased for a constant fluence, though the drop in the high Cu steel is marginal given the 

uncertainty in the predictions. Comparing the effective fluence, Figure 8(b), suggests that both 

the low Cu steels have a significant flux effect associated with their embrittlement, whereas 



the high Cu steel has much less of an effect. The data here are plotted for a fluence of 1.1×1019 

n/cm2 i.e. a level where we would expect the matrix Cu to be fully depleted, the lack of a 

significant flux effect is therefore in line with the expectations for these conditions.  

 The composition of the steel appears to have a relatively minor effect upon the shape 

of the flux curve, with the notable exception of very low Ni contents. This is illustrated in 

Figure 8 (a) and (b) where we show there is a significant increase in the effect of flux for the 

low Ni case (CNi=0.1 wt. %) compared with high Ni (CNi=1.5 wt. %). Other compositional 

trends (Figure 8(c) and (d)) show the example of Mn and P) have much less effect on the shape 

of the trend curve. It is not clear what the reason for the dependence on Ni is in these steels: it 

may be attributed to the very low values of shift in steels with low Ni but it should also be 

noted that there are few very low and very high values of Ni within the IVAR dataset in order 

to make a systematic comparison.  

3.3 Compositional dependence 

The compositional dependences of irradiation embrittlement are important to understand 

because the large number of correlated variables often confound traditional trend curve fitting. 

In this case, we consider the behaviour of steels with differing levels of Ni, Mn and Cu. These 

are important variables because they can vary widely between different grades of steel (for 

example Ni contents within the US database range from 0.3 to 1.6 wt%) and therefore incorrect 

weighting of these variables can cause significant problems when extrapolated to new 

compositions. High Ni levels are often associated with increased levels of embrittlement, but 

also bring benefits of higher un-irradiated strength, better start-of-life toughness and lower 

levels of segregation during forging. Balancing these differing factors is an important part of 

the development of new, lower-cost vessel alloys and fabrication routes.  

Figure 9 shows the overall dependence of embrittlement shift from the IVAR data as a 

function of the same compositional variables plotted in Figure 2. This is calculated for a 



medium fluence (1×1019n/cm2), low IVAR flux (1×1011n/cm2s-1), and a temperature of 290°C. 

There is an unsurprising influence of Cu on the shift, although interestingly there is not a 

distinct division between ‘high’ and ‘low’ Cu steels. The influence of Ni is also significant 

though this occurs over a much broader range of compositions than any of the other solute 

species. The role of other species in determining the embrittlement shift is comparatively 

minor, with Mn in particular not predicted to have a strong effect on the total magnitude of 

shift despite the relatively large variation in total content. There is also reassuringly little 

evidence for strong non-linearity between the various different compositional terms, although 

there is some suggestion of a complicated relationship between Ni and Si.  

The compositional trends result in similar conclusions to those of Castin and co-workers 

in a previous study of ANNs for shift prediction [22]. The lack of strong dependence on Si and 

Mn mirrors the findings that Cu and Ni were the most significant input variables in determining 

shift and it was difficult to unpick separate contributions due to other alloying elements. 

Comparison with linear regression of the IVAR database (for example Table 4.2 of Reference 

[23]) also supports these conclusions with the relative changes in shift of low Cu steels as 

~30°C/wt.% Ni and ~16°C/wt% Mn.  

 

4.0 Discussion 

In this discussion section we look at the comparison of the ANN models with literature 

predictions, and the influence of irradiation variables upon the overall shift. We begin by 

comparing the ANN shift predictions for a subset of IVAR alloys to those obtained using more 

established models. For example, Figure 10 shows a selection of embrittlement predictions for 

the IVAR alloys CM16 and CM17, differing primarily in their Ni contents, with a flux of 

7.8×1011 n/cm2s-1 (‘high flux’ in the IVAR designations) and temperature of 290°C. This shows 

the original IVAR data (with similar fluxes selected) but compared with the ANN model 

https://paperpile.com/c/eICqfl/sUOA
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predictions plus error bands of two standard deviations. The ANN model does an acceptable 

job of predicting the data. We also compared these data with the predictions from the EONY 

model [12].  

 The data in Figure 10 demonstrates one of the drawbacks of the ANN approach compared 

to more physically based modelling. Firstly, the predictions may be associated with rather high 

uncertainties even for compositions within the database as evidenced by the comparison of 

CM16 and CM17. Secondly, we can see that outside of the range of the data the uncertainties 

grow significantly, and the predictions themselves may not follow a realistic trend. We can see 

in Figure 10 that the curve fails to tend to zero at low values of fluence although zero is within 

the predicted uncertainty. This is also illustrated in Figure 7, where extrapolation of the 

NUREG database outside of the flux region where the majority of the data lie comes with an 

increase in the uncertainty of the predictions.  

4.1 Jones and Williams Temperature Model 

The most extensive empirical study of the trend in irradiation embrittlement as a function 

of temperature is that of Jones and Williams [33], based on data initially taken from carbon-

manganese steels used in the UK nuclear industry. The Jones and Williams model predicts the 

irradiation shift in low-Cu steels (less than 0.1 wt% Cu) relative to the shift at a reference 

temperature TR. In the original formulation of the model, this was expressed as a change in 

yield stress of the material, however on the assumption that this will linearly correlate with the 

change in T41J Charpy reference temperature we write: 

  (7) 

Where a and b are fitted parameters which are originally reported as 1.869 and 4.57×10–3 °C–1  

and refitted with additional data as 1.848 and 4.58×10–3 °C–1 [33]. The reference temperature 
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TR is arbitrary and is normally quoted as 190°C. 

 Figure 6 demonstrated that the ANN predictions were approximately linear with 

temperature, which is in agreement with the Jones and Williams model. Using these data we 

have investigated any variation in these trends with steel composition. We show in Figure 11 

the results of linear fits to the temperature variation for a variety of compositions: for simplicity 

we take TR=0°C and compare the ratio b/a in the Jones and Williams model (2.48×10–3) with 

the numerical gradient of the temperature plots. This demonstrates that overall the predictions 

are in agreement with the literature model. We can however also examine more subtle 

variations with different compositions. Si and Mn have little effect upon the gradient; however 

both Cu and P have an effect. In the case of Cu, this may be due to an additional contribution 

of Cu precipitation (as well as matrix damage) where at lower temperatures the lower solubility 

of Cu may lead to greater amounts available for precipitation. This is reinforced by the 

observation that the effect is more pronounced in the higher rather than the lower fluence data. 

The role of P is more uncertain, there are no reports of grain boundary embrittlement in the 

tested steels so it would seem unlikely that this is an effect due to non-hardening embrittlement.  

The effect of Ni content on the temperature variation is also worthy of comment. There is 

a small but significant increase in the temperature sensitivity dropping from a high-Ni (CNi=1.6 

wt.%) steel to a very low Ni (CNi=1.6 wt.%). This is in line with more complex temperature 

trends: in particular, Odette et al. [23] and Williams et al. [36] suggest a link between Ni 

content, CNi, and the temperature factor. In this case, the most recent formulation is a shift in 

embrittlement of: 

  (8) 

Where a=1117, b=180.8 per wt. % and again we have assumed a linear relationship between 

the shift in 41J Charpy energy and the hardness changes reported in the original reference.  The 



predicted trends are all close to linear and so it was not possible to distinguish between these 

linear models and the more complex exponential dependence proposed by Debarberis and co-

workers [34]. 

4.2 Comparison with Flux Models 

The variation of embrittlement with irradiation flux at a given fluence determines the 

embrittlement shift in a real reactor vessel when extrapolated from accelerated surveillance 

data collected over a third to a fifth of the reactor operating lifetime [4]. It is of great practical 

importance as current operating nuclear power plants are justified to be safe partly based on 

these data. The introduction of new materials and methods into the next generation of nuclear 

power plants also relies upon being able to collect relevant embrittlement data in advance of 

first operation which will require the use of greatly accelerated test irradiations in order to 

provide an initial safety justification.  

The flux effect has a sound physical basis on precipitation which has been captured 

through rate-theory modelling of irradiation-induced Frenkel pairs and their subsequent effect 

on the diffusion of solute species within the steel [38, 39]. Essentially, as flux is increased the 

rate of vacancy generation increases but the fractions diffusing over long distances to fixed 

sinks (dislocations or grain boundaries) reduces due to increased recombination in the region 

local to the cascade [35]. The effect of these vacancies on radiation enhanced diffusion 

therefore increases with flux, but not as much as would be expected due to the decrease in the 

average lifetime of a vacancy. The question for the embrittlement of RPV steels is whether this 

effect is significant (and therefore requires separate accounting) when extrapolating from a 

high flux value to a realistic RPV wall value. This depends upon the range of flux, the 

composition of the steel, the fluence reached and the irradiation temperature.  

The presupposition of any trend curve linking high and low flux irradiations is also 

important to test. Very high flux irradiations, either from short test reactor exposure or 
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(increasingly) from ion-beam implantation are very attractive to the community as they achieve 

very high doses in a short time, allow a much greater range of material conditions to be 

assessed; and in the case of ion-beam implantation, do so without generating significant levels 

of radioactivity in the samples. For these data to be useful, even just as a screening method for 

new materials or manufacturing processes, the embrittlement must be shown to share the same 

physical origin as that occurring at reactor pressure vessel wall dose rates, i.e. the dominant 

contributions should come from solute precipitation or matrix damage. The current uncertainty 

over the role of high flux features limits the adoption of these potentially valuable techniques 

and data.  

Figure 7 demonstrates evidence of an effect of flux in low Cu steels within the ranges 

considered in the IVAR dataset and this also shows the reduction in the efficiency of the 

irradiation to a given fluence in producing damage in the steel. For comparison with literature 

models of this effect, it is common practice to link the effective fluence to a scaling parameter 

p ( ) and the ratio of fluxes: 

      (9) 

Where p ( ) = 0 would be the absence of any flux effect. The value of p ( ) calculated from 

the ANNs is presented in Figure 12 as a function of flux. Literature values of p ( ) (which are 

often averaged over a range of fluxes) are normally in the range 0.15-0.25 and we also note the 

close coincidence of the values and trends of these curves with the analytical expressions given 

in the work [12, 35].  The EONY model, which is primarily targeted at low flux surveillance 

data has an effective flux scaling factor of 0.28. 

The evidence for flux effects in low Cu steels is not agreed upon by the community. 

Several researchers have commented on the observed absence of flux effects in low Cu steels, 

particularly when considering the comparison of specific compositions of steels at low and 
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high flux but similar fluences [37]. Of most direct relevance is a previous study using ANNs 

found no effect of flux in the RADAMO database [22]. We note that the RADAMO database 

is generally composed of higher flux irradiations than the IVAR database (typically 0.2 to 

8×1013 n/cm2s-1) it is possible that the flux effect will be less (or absent) in this region. An 

alternative explanation is the existence of additional hardening features that are thermally 

unstable at the irradiation temperature and therefore only produce significant populations at 

high flux when the formation rate becomes significant compared with the dissolution rate. At 

very high test reactor fluxes these unstable matrix defects provide a compensating increase in 

hardness that masks the delay in formation of matrix damage [40]. The influence of these 

defects has been discounted in the high flux data after careful examination of specific steel 

compositions [41].  

 

5 Conclusions 

This paper has developed models of irradiation embrittlement based on artificial neural 

network predictions from two different datasets. This has been done in order to examine the 

dependence of embrittlement on a range of variables and also to assess the performance of the 

model against various literature models. The neural network predictions perform with a similar 

level of uncertainty to literature-based models. It should be noted that many of the model plots 

present in the literature are based on predictions of data to which the model has already been 

fitted, rather than independent datasets, and therefore the quoted values of accuracy may be 

optimistic.  

The dependence of the neural network predictions against various input parameters is 

largely in keeping with those expected from physically-based modelling. Where then do these 

non-mechanistic models sit within the requirements to predict accurately the degradation of a 

nuclear pressure vessel steel? As can be seen from Figures 7 and 10, the predictions from such 
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models may be associated with high levels of uncertainty particularly when extrapolating from 

the extent of an irradiation database. Their use in the prediction of end of life embrittlement for 

vessels may be limited therefore by this high uncertainty, given that even surveillance data are 

not representative of the true vessel wall conditions and require some extrapolation. They are 

however flexible and once setup do not require extensive work to refit as new data is added to 

the database. As reactors mature, the increased availability of surveillance data together with 

the older, higher total fluence vessels will change where in the dataspace the most important 

predictions arise and therefore we believe these sorts of networks provide a test of the reliability 

of existing models and any errors within the database. Where these mechanistic and non-

mechanistic models agree, it is likely that the level of risk is low; where they are in conflict 

then this provides forewarning of a potential lack of understanding in the embrittlement 

predictions. This allows future irradiation damage programmes to be planned in a rational and 

informed basis.  
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Table and Figure captions  

Table 1: Optimisation of function form of the fluence and flux parameters for training the 

artificial neural network 

 

Table 2: Summary of average error and bias statistics from IVAR and NUREG training and 

validation datasets. 

 

Figure 1: Plot comparing the fast neutron flux and fluence values used from the IVAR (green) 

and NUREG (blue) datasets. The solid and dashed lines show a comparative range of values 

expected at end-of-life for the inner wall of a US PWR and the typical surveillance capsule 

data assuming a lead-factor of four. 

 

Figure 2: Plots showing the range of compositions within the IVAR dataset. 

 

Figure 3: Moving average trendline showing the optimisation of neurons in the hidden layer 

based on minimisation of root mean square error (RMSE). Minimum test (red dotted line) and 

training error (blue dotted line) was first obtained with 11 neurons in the hidden layer.  

 

Figure 4. Schematic representation of the ANN architecture used in this study: log-sigmoidal 

and linear transfer functions are used in the first and second layers.  

 

Figure 5: Comparison of the measured values and the values predicted from the ANNs for 

both the IVAR and NUREG databases showing training data ((a) and (b)) and data reserved 



for validation ((c) and (d)).  

 

Figure 6: Variation in IVAR neural network estimated embrittlement shift as a function of 

temperature for (a) Cu contents of 0.04, and 0.5 wt. % and (b) Ni contents of 0.1 (low) and 1.5 

wt.% (high)  Other parameters (where not specified) are CNi=1.5, CCu=0.04, CMn=1.5, CSi=0.2 

and CP=0.005 wt.%. Solid black lines denote linear fits to the data. 

 

Figure 7: (a) Estimated transition temperature shift as a function of flux for low Cu, low and 

high Ni steels from NUREG database [6] (b) Efficiency of the neutrons at producing irradiation 

damage at higher fluxes normalised to a reference flux of 1.5×1011 n/cm2s-1. Values for other 

parameters were CCu=0.08, CMn=0.6, CP=0.005, CSi=0.2 wt%, the irradiation temperature was 

290°C and the fluence was 8×1018 n/cm2. 

 

Figure 8: Variation in estimated embrittlement shift from the IVAR-based model [23] as a 

function of flux for (a) Ni contents of 0.1 (low) and 1.5 wt.% (high)  (b) Mn contents of 0.1, 

and 1.5 wt. % and P contents of 0.002, and 0.05 wt. %. Other parameters were CNi=1.5, 

CCu=0.04, CMn=1.5, CSi=0.2 and CP=0.005 wt.%.  Data points are fitted using spline 

interpolation.  

 

Figure 9: Embrittlement shift variation expressed as a function of interactions of chemical 

composition for (a) Ni and Cu (b) Ni and Mn (c) Ni and Si (d) Ni and P. Other parameters not 

given were CNi=1.5, CCu=0.04, CMn=1.5, CSi=0.2 and CP=0.005 wt.%.   

 

Figure 10: Prediction curves for CM16 and CM17 showing IVAR data (purple squares), 

EONY model prediction (red curve) [12] and ANN prediction bounds (black lines) showing 



central prediction and plus and minus one standard deviation.  

 

Figure 11: Plot of the b/a ratio as calculated from linear fits to the ANN model predictions and 

compared with the literature Jones and Williams (J&W) value for carbon-manganese steels 

[33]. Values of parameters not given in the figure are: CNi=1.5, CCu=0.04, CMn=1.5, CSi=0.2 

and CP=0.005 wt.%. High and low fluence values are 1×1019 and 3×1019 n/cm2 and a flux of 

3×1011 n/cm2s-1. 

 

Figure 12: Plot showing the variation of the flux scaling parameter p across the IVAR flux 

range (p=0 would be no flux effect) for three different temperatures. Values of parameters 

are: CNi=1.5, CCu=0.04, CMn=1.5, CSi=0.2 and CP=0.005 wt.%. The value of fluence is 3×1019 

n/cm2.  
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Tables 

 

Table 1: Optimisation of function form of the fluence and flux parameters for training the 

artificial neural network 

Functional form  RMSEtraining 

F(fluence, flux) 24.75 

F(fluence1/2, flux1/2) 21.75 

F(log(fluence), log(flux)) 26.59 

 

  



Table 2: Summary of average error and bias statistics from IVAR and NUREG training and 

validation datasets. 

Database Avg. Error, MPa Avg. Bias, MPa 

IVAR (training) 17.9 0.23 

IVAR (validation) 16.1 11.5 

NUREG (training) 22.6 0.96 

NUREG (validation) 30.7 5.9 

 

  



Figures 

 

 

 

Figure 1: Plot comparing the fast neutron flux and fluence values used from the IVAR (green) 

and NUREG (blue) datasets. The solid and dashed lines show a comparative range of values 

expected at end-of-life for the inner wall of a US PWR and the typical surveillance capsule 

data assuming a lead-factor of four.  

  



 

Figure 2: Plots showing the range of compositions within the IVAR dataset. 

  



 

Figure 3: Moving average trendline showing the optimisation of neurons in the hidden layer 

based on minimisation of root mean square error (RMSE). Minimum test (red dotted line) and 

training error (blue dotted line) was first obtained with 11 neurons in the hidden layer. 

  



 

Figure 4. Schematic representation of the ANN architecture used in this study: log-sigmoidal 

and linear transfer functions are used in the first and second layers. 

  



     
         (a) IVAR training data               (b) NUREG training data  

  

  

                      (c) IVAR test data                     (d) NUREG test data 

Figure 5: Comparison of the measured values and the values predicted from the ANNs for 

both the IVAR and NUREG databases showing training data ((a) and (b)) and data reserved 

for validation ((c) and (d)).  

 

 

  



 

   (a) 

 

   (b) 

Figure 6: Variation in IVAR neural network estimated embrittlement shift as a function of 

temperature for (a) Cu contents of 0.04, and 0.5 wt. % and (b) Ni contents of 0.1 (low) and 1.5 

wt.% (high)  Other parameters (where not specified) are CNi=1.5, CCu=0.04, CMn=1.5, CSi=0.2 

and CP=0.005 wt.%. Solid black lines denote linear fits to the data. 

  



 

Figure 7: (a) Estimated transition temperature shift as a function of flux for low Cu, low and 

high Ni steels from NUREG database [6] (b) Efficiency of the neutrons at producing irradiation 

damage at higher fluxes normalised to a reference flux of 1.5×1011 n/cm2s-1. Values for other 

parameters were CCu=0.08, CMn=0.6, CP=0.005, CSi=0.2 wt%, the irradiation temperature was 

290°C and the fluence was 8×1018 n/cm2. 

  



 

Figure 8: Variation in estimated embrittlement shift from the IVAR-based model [23] as a 

function of flux for (a) Ni contents of 0.1 (low) and 1.5 wt.% (high)  (b) Mn contents of 0.1, 

and 1.5 wt. % and P contents of 0.002, and 0.05 wt. %. Other parameters were CNi=1.5, 

CCu=0.04, CMn=1.5, CSi=0.2 and CP=0.005 wt.%.  Data points are fitted using spline 

interpolation.  

  



Figure 9: Embrittlement shift variation expressed as a function of interactions of chemical 

composition for (a) Ni and Cu (b) Ni and Mn (c) Ni and Si (d) Ni and P. Other parameters not 

given were CNi=1.5, CCu=0.04, CMn=1.5, CSi=0.2 and CP=0.005 wt.%.   

  



 

(a) 

 

(b) 

Figure 10: Prediction curves for CM16 and CM17 showing IVAR data (purple squares), 

EONY model prediction [12] (red curve) and ANN prediction bounds (black lines) showing 

central prediction and plus and minus one standard deviation.  

  



 

Figure 11: Plot of the b/a ratio as calculated from linear fits to the ANN model predictions and 

compared with the literature Jones and Williams (J&W) value for carbon-manganese steels 

[33]. Values of parameters not given in the figure are: CNi=1.5, CCu=0.04, CMn=1.5, CSi=0.2 

and CP=0.005 wt.%. High and low fluence values are 1×1019 and 3×1019 n/cm2 and a flux of 

3×1011 n/cm2s-1. 
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Figure 12: Plot showing the variation of the flux scaling parameter p across the IVAR flux 

range (p=0 would be no flux effect) for three different temperatures. Values of parameters 

are: CNi=1.5, CCu=0.04, CMn=1.5, CSi=0.2 and CP=0.005 wt.%. The value of fluence is 3×1019 

n/cm2.  

 

 

 

 


