155 research outputs found

    The search for negative amplitude components in quasi-continuous distributions of relaxation times: the example of 1H magnetization exchange in articular cartilage and hydrated collagen

    Get PDF
    When inverting nuclear magnetic resonance relaxation data in order to obtain quasi-continuous distributions of relaxation times for fluids in porous media, it is common practice to impose a non-negative (NN) constraint on the distributions. While this approach can be useful in reducing the effects of data distortion and/or preventing wild oscillations in the distributions, it may give misleading results in the presence of real negative amplitude components. Here, some examples of valid negative components for articular cartilage and hydrated collagen are given. Articular cartilage is a connective tissue, consisting mainly of collagen, proteoglycans and water, which can be considered, in many aspects, as a porous medium. Separate T1 relaxation data are obtained for low-mobility ('solid') macromolecular 1H and for higher-mobility ('liquid') 1H by the separation of these components in free induction decays, with α denoting the solid/liquid 1H ratio. When quasi-continuous distributions of relaxation times (T1) of the solid and liquid signal components of cartilage or collagen are computed from experimental relaxation data without imposing the usual NN constraint, valid negative peaks may appear. The features of the distributions, in particular negative peaks, and the fact that peaks at longer times for macromolecular and water protons are at essentially the same T1, are interpreted as the result of a magnetization exchange between these two spin pools. For the only-slightly-hydrated collagen samples, with α>1, the exchange leads to small negative peaks at short T1 times for the macromolecular component. However, for the cartilage, with substantial hydration or for a strongly hydrated collagen sample, both with α1, the behavior is reversed, with a negative peak for water at short times. The validity of a negative peak may be accepted (dismissed) by a high (low) cost of NN in error of fit. Computed distributions for simulated data using observed signal-to-noise ratios also verify the need for some negative components. Observed relaxation times and signal ratios can be fitted formally by a simple two-site exchange model that gives the exchange times and the uncoupled relaxation times of the liquid and solid components, with significant trends of these parameters with increasing 1H ratio, α. The solid-to-liquid exchange times are found to be in the range from 10 ms to a few tens of ms at all hydration levels. The results may be of interest for the application of magnetization exchange contrast in the imaging of articular cartilage to determine changes associated with pathologies and ageing. Other important porous media exist where exchange phenomena and negative relaxation components cannot be disregarded

    Analysis of inter-fraction setup errors and organ motion by daily kilovoltage cone beam computed tomography in intensity modulated radiotherapy of prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intensity-modulated radiotherapy (IMRT) enables a better conformality to the target while sparing the surrounding normal tissues and potentially allows to increase the dose to the target, if this is precisely and accurately determined. The goal of this work is to determine inter-fraction setup errors and prostate motion in IMRT for localized prostate cancer, guided by daily kilovoltage cone beam computed tomography (kVCBCT).</p> <p>Methods</p> <p>Systematic and random components of the shifts were retrospectively evaluated by comparing two matching modalities (automatic bone and manual soft-tissue) between each of the 641 daily kVCBCTs (18 patients) and the planning kVCT. A simulated Adaptive Radiation Therapy (ART) protocol using the average of the first 5 kVCBCTs was tested by non-parametric bootstrapping procedure.</p> <p>Results</p> <p>Shifts were < 1 mm in left-right (LR) and in supero-inferior (SI) direction. In antero-posterior (AP) direction systematic prostate motion (2.7 ± 0.7 mm) gave the major contribution to the variability of results; the averages of the absolute total shifts were significantly larger in anterior (6.3 ± 0.2 mm) than in posterior (3.9 mm ± 0.2 mm) direction. The ART protocol would reduce margins in LR, SI and anterior but not in posterior direction.</p> <p>Conclusions</p> <p>The online soft-tissue correction based on daily kVCBCT during IMRT of prostate cancer is fast and efficient. The large random movements of prostate respect to bony anatomy, especially in the AP direction, where anisotropic margins are needed, suggest that daily kVCBCT is at the present time preferable for high dose and high gradients IMRT prostate treatments.</p

    Integrated techniques to evaluate the features of sedimentary rocks of archaeological areas of Sicily

    Get PDF
    Sicily includes a great variety of lithologies, giving a high complexity to the geologic landscape. Their prevalent lithology is sedimentary. It is well known that rocks of sedimentary origin, compared with metamorphic and volcanic deposits, can be relatively soft and hence fairly easy to model. Nevertheless, this workability advantage is a drawback for Cultural Heritage applications. In fact, these materials show a high porosity, with pore-size distributions that lead to deterioration through absorption of water. In this paper, several sedimentary rocks used in historical Cultural Heritage items of Sicily, from "Magna Graecia" to nowadays, are classified for mineralogical features, chemical composition, and for porosity. Particularly, some samples collected in quarries relevant to the archaeological sites of 41 Agrigento, Segesta and Selinunte will be considered and characterized using integrated techniques (XRD, XRF, NMR and CT). Data on samples obtained in laboratory will be compared with the relevant values measured in situ on monuments of historical-cultural interest of the quoted archaeological places

    Propagator Resolved Transverse Relaxation Exchange Spectroscopy

    No full text
    We use the propagator resolved transverse relaxation exchange technique to look at the movement of fluid in three different types of rock samples. The two pore model previously used to fit molecular exchange simulations to the experimental data is expanded to accommodate the three site exchange seen in two of the samples. Estimated values for pore space characteristics from the simulations were compared to values calculated from X‐Ray CT data of the samples. While discrepancies exist between the NMR and X‐Ray CT results, the molecular exchange behavior estimated from the three samples reflects well with their morphology

    Linking Internal Carbonate Chemistry Regulation and Calcification in Corals Growing at a Mediterranean CO2 Vent

    Get PDF
    Corals exert a strong biological control over their calcification processes, but there is a lack of knowledge on their capability of long-term acclimatization to ocean acidification (OA). We used a dual geochemical proxy approach to estimate the calcifying fluid pH (pHcf) and carbonate chemistry of a Mediterranean coral (Balanophyllia europaea) naturally growing along a pH gradient (range: pHTS 8.07–7.74). The pHcf derived from skeletal boron isotopic composition (ÎŽ11B) was 0.3–0.6 units above seawater values and homogeneous along the gradient (mean ± SEM: Site 1 = 8.39 ± 0.03, Site 2 = 8.34 ± 0.03, Site 3 = 8.34 ± 0.02). Also carbonate ion concentration derived from B/Ca was homogeneous [mean ± SEM (ÎŒmol kg–1): Site 1 = 579 ± 34, Site 2 = 541 ± 27, Site 3 = 568 ± 30] regardless of seawater pH. Furthermore, gross calcification rate (GCR, mass of CaCO3 deposited on the skeletal unit area per unit of time), estimated by a “bio-inorganic model” (IpHRAC), was homogeneous with decreasing pH. The homogeneous GCR, internal pH and carbonate chemistry confirm that the features of the “building blocks” – the fundamental structural components – produced by the biomineralization process were substantially unaffected by increased acidification. Furthermore, the pH up-regulation observed in this study could potentially explain the previous hypothesis that less “building blocks” are produced with increasing acidification ultimately leading to increased skeletal porosity and to reduced net calcification rate computed by including the total volume of the pore space. In fact, assuming that the available energy at the three sites is the same, this energy at the low pH sites could be partitioned among fewer calicoblastic cells that consume more energy given the larger difference between external and internal pH compared to the control, leading to the production of less building blocks (i.e., formation of pores inside the skeleton structure, determining increased porosity). However, we cannot exclude that also dissolution may play a role in increasing porosity. Thus, the ability of scleractinian corals to maintain elevated pHcf relative to ambient seawater might not always be sufficient to counteract declines in net calcification under OA scenarios

    Gains and losses of coral skeletal porosity changes with ocean acidification acclimation

    Get PDF
    Ocean acidi\ufb01cation is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic bene\ufb01ts these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO2 vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features &gt;10 micrometers) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton\u2019s structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean

    FAM_4-Misura-T1-T2-2015-16

    No full text

    FAM-11-DEDUZIONE-CPMG-2015-16

    No full text

    FAM-24-Ultras-2015-16

    No full text
    • 

    corecore