64 research outputs found

    9-Borafluoren-9-yl and diphenylboron tetracoordinate complexes of 8-quinolinolato ligands with heavy-atoms substituents: synthesis, fluorescence and application in OLED devices

    Get PDF
    This work describes the synthesis and characterisation of new tetrahedral boron complexes, incorporating bromine- or iodine-substituted 8-quinolinolato chelate chromophores connected to 9-borafluoren-9-yl or diphenylboron orthogonal fragments. The molecular features and photophysical properties of these complexes are analysed in both solution and solid state. Steady-state photophysical studies reveal photoluminescence quantum yields (Ίf) ranging from 0.02 to 0.15 and prompt fluorescence (PF) lifetimes (τf) between 2 and 16 ns. Time-resolved photophysical experiments show the presence of delayed fluorescence (DF) and phosphorescence at both 77 K and room temperature. The DF intensity increases with a rise in temperature. This variation is ascribed to an enhancement in the intersystem crossing (ISC) process promoted by the bromine or iodine heavy-atom effect. Investigations into the dependence of DF intensity relative to the excitation dose indicate emissions stemming either from Triplet-Triplet Annihilation (TTA), Thermally Activated Delayed Fluorescence (TADF), or a combination of these competing mechanisms. The effect is related to the size and number of heavy-atom substituents in each boron complex. A study of the DF emission intensity as a function of the excitation dose reveals that diiodo-substituted 8-quinolinolato boron complexes, whether rigid or flexible, display TADF emission. Rigid 5,7-dibromo- and 5-chloro-7-iodo-substituted 8-quinolinolato complexes exhibit a combined TADF-TTA mechanism, whereas the other complexes predominantly demonstrate pure TTA emission. DFT and TDDFT calculations showed that the ground state structures reproduced the experimental geometries and only small increases in bond lengths were observed in the excited state geometries. The low energy absorption bands displayed mainly intra-ligand π→π* (8-quinolinato) character. The fluorescence emission energies were well reproduced, while the singlet-triplet energy gaps were relatively high. Ultimately, organic light-emitting diodes (OLEDs) are fabricated using the most luminescent boron complexes. The best OLED is obtained when using complex 3a, which displays green electroluminescence (EL) (λEL = 502 nm) with maximum external quantum efficiency (EQEmax) of 2.5% and maximum luminance (Lmax) of 2200 cd m-2

    Nanostructured Channel for Improving Emission Efficiency of Hybrid Light-Emitting Field-Effect Transistors

    Get PDF
    We report on the mechanism of enhancing the luminance and external quantum efficiency (EQE) by developing nanostructured channels in hybrid (organic/inorganic) light-emitting transistors (HLETs) that combine a solution-processed oxide and a polymer heterostructure. The heterostructure comprised two parts: (i) the zinc tin oxide/zinc oxide (ZTO/ZnO), with and without ZnO nanowires (NWs) grown on the top of the ZTO/ZnO stack, as the charge transport layer and (ii) a polymer Super Yellow (SY, also known as PDY-132) layer as the light-emitting layer. Device characterization shows that using NWs significantly improves luminance and EQE (≈1.1% @ 5000 cd m–2) compared to previously reported similar HLET devices that show EQE < 1%. The size and shape of the NWs were controlled through solution concentration and growth time, which also render NWs to have higher crystallinity. Notably, the size of the NWs was found to provide higher escape efficiency for emitted photons while offering lower contact resistance for charge injection, which resulted in the improved optical performance of HLETs. These results represent a significant step forward in enabling efficient and all-solution-processed HLET technology for lighting and display applications

    9-Borafluoren-9-yl and diphenylboron tetracoordinate complexes of F- and Cl-substituted 8-quinolinolato ligands: synthesis, molecular and electronic structures, fluorescence and application in OLED devices

    Get PDF
    Six new four-coordinate tetrahedral boron complexes, containing 9-borafluoren-9-yl and diphenylboron cores attached to orthogonal fluorine- and chlorine-substituted 8-quinolinolato ligand chromophores, have been synthesised, characterised, and applied as emitters in organic light-emitting diodes (OLEDs). An extensive steady-state and time-resolved photophysical study, in solution and in the solid state, resulted in the first-time report of delayed fluorescence (DF) in solid films of 8-quinolinolato boron complexes. The DF intensity dependence on excitation dose suggests that this emission originates from triplet–triplet annihilation (TTA). Density functional theory (DFT) and time-dependent density functional theory (TDDFT) studies give insight into the ground and excited state geometries, electronic structures, absorption energies, and singlet–triplet gaps in these new organoboron luminophores. Finally, given their highly luminescent behaviour, organic light-emitting diode (OLED) devices were produced using the synthesised organoboron compounds as emissive fluorescent dopants. The best OLED displays green-blue (λmaxEL = 489 nm) electroluminescence with an external quantum efficiency (EQE) of 3.3% and a maximum luminance of 6300 cd m−2

    Endoskeletal structure in Cheirolepis (Osteichthyes, Actinopterygii), An early ray-finned fish

    Get PDF
    As the sister lineage of all other actinopterygians, the Middle to Late Devonian (Eifelian–Frasnian) Cheirolepis occupies a pivotal position in vertebrate phylogeny. Although the dermal skeleton of this taxon has been exhaustively described, very little of its endoskeleton is known, leaving questions of neurocranial and fin evolution in early ray‐finned fishes unresolved. The model for early actinopterygian anatomy has instead been based largely on the Late Devonian (Frasnian) Mimipiscis, preserved in stunning detail from the Gogo Formation of Australia. Here, we present re‐examinations of existing museum specimens through the use of high‐resolution laboratory‐ and synchrotron‐based computed tomography scanning, revealing new details of the neuro‐cranium, hyomandibula and pectoral fin endoskeleton for the Eifelian Cheirolepis trailli. These new data highlight traits considered uncharacteristic of early actinopterygians, including an uninvested dorsal aorta and imperforate propterygium, and corroborate the early divergence of Cheirolepis within actinopterygian phylogeny. These traits represent conspicuous differences between the endoskeletal structure of Cheirolepis and Mimipiscis. Additionally, we describe new aspects of the parasphenoid, vomer and scales, most notably that the scales display peg‐and‐socket articulation and a distinct neck. Collectively, these new data help clarify primitive conditions within ray‐finned fishes, which in turn have important implications for understanding features likely present in the last common ancestor of living osteichthyans

    First documentation of the Polygnathoides siluricus conodont Zone (Ludfordian) in South America (Argentina) and the stratigraphic significance of the younger species of Kockelella (Conodonta)

    Get PDF
    The coquinoid beds from the middle part of the Los Espejos Formation at the Poblete creek section (Talacasto Creek) yielded abundant conodonts. The genus Kockelella (Walliser) represents the most relevant biostratigraphical genus in this conodont fauna. The co-occurrence of Kockelella maenniki Serpagli and Corradini, Kockelella variabilis ichnusae Serpagli and Corradini, K. variabilis Walliser, Kockelella ortus sardoa (Serpagli & Corradini), and Kockelella ortus absidata (Barrick & Klapper) allow us to record for the first time the Polygnathoides siluricus Zone in South America, which suggests the Ludfordian Stage (late Ludlow). We also propose an accurate correlation of the Los Espejos Formation with the lower Ludfordian deposits from the Carnic Alps, Sardinia, Morocco, Czech Republic, Gotland, and North America.Fil: Gomez, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Mestre, Ana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Garcias Paez, Yanina Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Corradini, Carlo. Università degli Studi di Cagliari; Itali

    Report from the fourth international consensus meeting to harmonize core outcome measures for atopic eczema/dermatitis clinical trials (HOME initiative)

    Get PDF
    This article is a report of the fourth meeting of the Harmonising Outcome Measures for Eczema (HOME) initiative held in Malmö, Sweden on 23–24 April 2015 (HOME IV). The aim of the meeting was to achieve consensus over the preferred outcome instruments for measuring patient-reported symptoms and quality of life for the HOME core outcome set for atopic eczema (AE). Following presentations, which included data from systematic reviews, consensus discussions were held in a mixture of whole group and small group discussions. Small groups were allocated a priori to ensure representation of different stakeholders and countries. Decisions were voted on using electronic keypads. For the patient-reported symptoms, the group agreed by vote that itch, sleep loss, dryness, redness/inflamed skin and irritated skin were all considered essential aspects of AE symptoms. Many instruments for capturing patient-reported symptoms were discussed [including the Patient-Oriented SCOring Atopic Dermatitis index, Patient-Oriented Eczema Measure (POEM), Self-Administered Eczema Area and Severity Index, Itch Severity Scale, Atopic Dermatitis Quickscore and the Nottingham Eczema Severity Score] and, by consensus, POEM was selected as the preferred instrument to measure patient-reported symptoms. Further work is needed to determine the reliability and measurement error of POEM. Further work is also required to establish the importance of pain/soreness and the importance of collecting information regarding the intensity of symptoms in addition to their frequency. Much of the discussion on quality of life concerned the Dermatology Life Quality Index and Quality of Life Index for Atopic Dermatitis; however, consensus on a preferred instrument for measuring this domain could not be reached. In summary, POEM is recommended as the HOME core outcome instrument for measuring AE symptoms

    Constitutional Microsatellite Instability, Genotype, and Phenotype Correlations in Constitutional Mismatch Repair Deficiency

    Get PDF
    Background &amp; aims: Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood.Methods: Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to &gt;120 7 depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000 7 depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls.Results: Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor.Conclusions: We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk

    Indicators of river system hydromorphological character and dynamics: understanding current conditions and guiding sustainable river management

    Get PDF
    The work leading to this paper received funding from the EU’s FP7 programme under Grant Agreement No. 282656 (REFORM). The Indicators were developed within the context of REFORM deliverable D2.1, therefore all partners involved in this deliverable contributed to some extent to their discussion and development

    Targeted therapies in colorectal cancer: an integrative view by PPPM

    Get PDF
    In developed countries, colorectal cancer (CRC) is the third most common malignancy, but it is the second most frequent cause of cancer-related death. Clinicians are still faced with numerous challenges in the treatment of this disease, and future approaches which target the molecular features of the disorder will be critical for success in this disease setting. Genetic analyses of many solid tumours have shown that up to 100 protein-encoding genes are mutated. Within CRC, numerous genetic alterations have been identified in a number of pathways. Therefore, understanding the molecular pathology of CRC may present information on potential routes for treatment and may also provide valuable prognostic information. This will be particularly pertinent for molecularly targeted treatments, such as anti-vascular endothelial growth factor therapies and anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapy. KRAS and BRAF mutations have been shown to predict response to anti-EGFR therapy. As EGFR can also signal via the phosphatidylinositol 3-kinase (PI3K) kinase pathway, there is considerable interest in the potential roles of members of this pathway (such as PI3K and PTEN) in predicting treatment response. Therefore, a combined approach of new techniques that allow identification of these biomarkers alongside interdisciplinary approaches to the treatment of advanced CRC will aid in the treatment decision-making process and may also serve to guide future therapeutic approaches
    • 

    corecore