614 research outputs found

    The chemistry of Niobium and Tantalum halides, MX5, with haloacetic acids and their related anhydrides: anhydride C–H bond activation promoted by MF5

    Get PDF
    Niobium and tantalum pentahalides, MX5 (1), react with acetic acid and halo-substituted acetic acids, in 1:1 ratio, to give the dinuclear complexes [MX4(μ-OOCMe)]2 [M = Nb, X = Cl, 2a; M = Ta, X = Cl, 2b; Br, 2c] and [MCl4(μ-OOCR)]2 [M = Nb, R = CH2Cl, 4a; CHCl2, 4c; CCl3, 4e; CF3, 4g; CHBr2, 4i; CH2I, 4j; M = Ta, R = CH2Cl, 4b; CHCl2, 4d; CCl3, 4f; CF3, 4h]. The solid state structures of 2b and 4e have been ascertained by X-ray diffraction studies. The reactions of 1 with acetic anhydride and halo-substituted acetic anhydrides result in C–O bond activation and afford 2 and 4, respectively, with concomitant formation of acetyl halides. Moreover, the complexes MCl5[OC(Cl)Me] [M = Nb, 3a; M = Ta, 3b] have been detected in significant amounts within the mixtures of the reactions of MCl5 with acetic anhydride. TaI5 is unreactive, at room temperature, towards both MeCOOH and (MeCO)2O. MF5 react with RCOOH (R = Me, CH2Cl) in 1:1 molar ratio, to afford the ionic compounds [MF4(RCOOH)2][MF6], 5a–d, in high yields. The additions of (RCO)2O (R = Me, CH2Cl) to MF5 give 5, suggesting that anhydride C–H and C–O bonds activation is operative during the course of these reactions

    Multifrequency SAR data for estimating hydrological parameters

    Get PDF
    The sensitivity of backscattering coefficients to some geophysical parameters which play a significant role in hydrological processes (vegetation biomass, soil moisture and surface roughness) is discussed. Experimental results show that P-band makes it possible the monitoring of forest biomass, L-band appears to be good for wide-leaf crops, and C- and X-bands for small-leaf crops. Moreover, L-band backscattering makes the highest contribution in estimating soil moisture and surface roughness. The sensitivity to spatial distribution of soil moisture and surface roughness is rather low, since both quantities affect the radar signal. However, observing data collected at different dates and averaged over several fields, the correlation to soil moisture is significant, since the effects of spatial roughness variations are smoothed. The retrieval of both soil moisture and surface roughness has been performed by means of a semiempirical model

    New Ultra Small Iron-Oxide Nanoparticles with Titanium-Carbamate Coating: Preparation and Magnetic Properties

    Get PDF
    This work deals with the preparation and chemical characterization of new Ultra-Small Iron-Oxide Superparamagnetic Nanoparticles (USPIONs) functionalized with Titanium-carbamate. The synthesis was performed starting from oleate-coated and 2-pyrrolidone-coated USPIONs having a maghemite ( -Fe2O3) and magnetite (Fe3O4) crystalline core, respectively. Zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility curves as well as the magnetization behavior as a function of temperature are reported and discussed in view of the superparamagnetic properties and coating effect of these new magnetic nanoparticles. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3545

    A Crystallographic and Spectroscopic Study of the Reactions of WCl6 with Carbonyl Compounds

    Get PDF
    WCl6, 1, reacted with two equivalents of HC(O)NR2 (R = Me, Et) in CH2Cl2 to afford the W(VI) oxo-derivatives WOCl4(OCHNR2) (R = Me, 2a; R = Et, 2b) as main products. The hexachlorotungstate(V) salts [{ }2(-H)][WCl6], 3, and [PhNHC(Me)N(Ph)C(O)Me][WCl6], 4, were isolated in moderate yields from the 1:2 molar reactions of 1 with N-methyl-2-pyrrolidone (in CH2Cl2) and acetanilide (in CDCl3), respectively. The additions of two equivalents of ketones/aldehydes to 1/CH2Cl2 yielded the complexes WOCl4[OC(R)(R’)] (R = Me, R′ = Ph, 5a; R = R’ = Ph, 5b; R = R’ = Me, 5c; R = R’ = Et, 5d; R = H, R’ = 2-Me-C6H4, 5e) and equimolar amounts of C(R)(R’)Cl2. Analogously, WOCl3[2-{1,2-C6H4(O)(CHO)}], 5f, and 1,2-C6H4(OH)(CHCl2) were obtained from 1 and salicylaldehyde. The 1:1 reaction of 1 with acetone in CH2Cl2 resulted in the clean formation of WOCl4 and 2,2-dichloropropane. Compounds 5a,b,f were isolated as crystalline solids, whereas 5c,d,e could be detected by solution NMR only. The interaction of 1/CH2Cl2 with isatin, in 1:1 molar ratio, revealed to be a new, convenient route for the synthesis of 3,3-dichloro-2,3-dihydro-1H-indol-2-one, 6. The 1:1 reactions of 1 with R’OCH(R)CO2Me (R = H, R’ = Me; R = Me, R’ = H) in chlorinated solvent afforded the tungsten(V) adducts WCl4[2-OCH(R)CO2Me] (R = H, 7a; R = Me, 7b). 1/CH2Cl2 reacted sluggishly with equimolar quantities of trans-(CO2Et)CH=CH(CO2Et) and CH2(CO2Me)2 to give, respectively, the W(IV) derivatives WCl4[2-CH2(CO2Me)2], 8a, and [WCl4-2-{trans-(CO2Et)CH=CH (CO2Et)}]n, 8b, in about 70% yields. The molecular structures of 2a, 3, 4, 5a, 5f, 7a and 7b were ascertained by X-ray diffraction studies

    Non-precious metal carbamates as catalysts for the aziridine/CO2coupling reaction under mild conditions

    Get PDF
    The catalytic potential of a large series of easily available metal carbamates (based on thirteen different non-precious metal elements) was explored for the first time in the coupling reaction between 2-aryl-aziridines and carbon dioxide, working under solventless and ambient conditions and using tetraalkylammonium halides as co-catalysts. The straightforward synthesis of novel [NbCl3(O2CNEt2)2],NbCl, and [NbBr3(O2CNEt2)2],NbBr, is reported. The niobium complexNbCl, in combination with NBu4I, emerged as the best catalyst of the overall series to convert aziridines with smallN-alkyl substituents into the corresponding 5-aryl-oxazolidin-2-ones

    The cytotoxic activity of diiron bis-cyclopentadienyl complexes with bridging c3-ligands

    Get PDF
    Diiron bis-cyclopentadienyl bis-carbonyl cationic complexes with a bridging vinylim-inium ligand, [Fe2Cp2 (CO)(µ-CO){µ-η1:η3-C3 (R′)C2HC1NMe(R′′)}]CF3SO3 (R = Xyl = 2,6-C6H3Me2, R′ = Ph, R′′ = H, 2a; R = Xyl, R′ = R′′ = Me, 2b; R = R′ = Me, R′′ = H, 2c; R = Me, R′ = 2-naphthyl, R′′ = H, 2d; R = Me, R′ = R′′ = Ph, 2e), are easily available from commercial chemicals, robust in aqueous media and exert a variable in vitro cytotoxicity against cancer cell lines depending on the nature of the substituents on the vinyliminium ligand. The anticancer activity is, at least in part, associated to fragmentation reactions, leading to iron oxidation and active neutral and well-defined monoiron species. We report an innovative synthetic procedure for the preparation of 2a,c,d, and a facile method to access the monoiron derivative of 2a, i.e., [FeCp(CO){C1 (NMeXyl)C2HC3 (Ph)C(O)}] (3a). According to IC50 analyses at different times of incubation of the complexes, 3a is significantly faster in inhibiting cell viability compared to its diiron precursor 2a. The neutral complexes [Fe2Cp2 (CO)(µ-CO){µ-k1N:k1C:k1C-C3 (R′)C2 (Se)C1 (NMe2)C4 (CO2Y)C5 (CO2Y)}] (R′ = Y = Me, 4a; R′ = Pr, Y =tBu, 4b; R′ = Y = Et, 4c) are obtained via the two-step modification of the vinyliminium moiety and comprise a bridging selenophene-decorated alkylidene ligand. The antiproliferative activity exhibited by 4a-c is moderate but comparable on the ovarian cancer cell line A2780 and the corresponding cisplatin resistant cell line, A2780cisR. Complexes 4a-c in aqueous solutions undergo progressive release of the alkylidene ligand as a functionalized selenophene, this process being slower in cell culture medium. Since the released selenophenes SeC1 {C(O)R′ }C2 (NMe2)C3 (CO2Y)C4 (CO2Y) (R′ = Y = Me, 5a; R′ = Pr, Y =tBu, 5b) are substantially not cytotoxic, it is presumable that the activity of 4a-c is largely ascribable to the {Fe2Cp2 (CO)2 } scaffold

    Bypassing the Inertness of Aziridine/CO2 Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions

    Get PDF
    The development of sustainable synthetic routes to access valuable oxazolidinones via CO2 fixation is an active research area, and the aziridine/carbon dioxide coupling has aroused a considerable interest. This reaction features a high activation barrier and thus requires a catalytic system, and may present some other critical issues. Here, the straightforward gram-scale synthesis of a series of 5-aryl-2-oxazolidinones was developed at ambient temperature and atmospheric CO2 pressure, in the absence of any catalyst/co-catalyst. The key to this innovative procedure consists in the direct transfer of the pre-formed amine/CO2 adduct (carbamate) to common aziridine precursors (dimethylsulfonium salts), replacing the classical sequential addition of amine (intermediate isolation of aziridine) and then CO2. The reaction mechanism was investigated by NMR spectroscopy and DFT calculations applied to model cases

    Diiron bis-cyclopentadienyl complexes as transfer hydrogenation catalysts: The key role of the bridging aminocarbyne ligand

    Get PDF
    The catalytic activity of a series of diiron complexes based on the {Fe2Cp2(CO)(x)} core (x = 2-3) and containing a bridging aminocarbyne ligand was screened in transfer hydrogenation reaction of cyclohexanone from isopropanol. The series includes cationic tricarbonyl complexes, [1a-d]CF3SO3, and neutral derivatives obtained by substitution of one carbonyl with hydride (2a-c), cyanide (3a-d) or chloride (4a) ligands. The novel compounds 2a-b, 3a-b and 4a were characterized by analytical and spectroscopic techniques, and the single crystal X-ray structure of one isomer of 4a was determined. In general, diiron complexes exhibited a moderate activity in combination with potassium hydroxide; [Fe2Cp2(CN)(CO)(mu-CO){mu-CN (Me)(4-C6H4OMe)}], 3a, emerged as the best catalyst, and the study of its activity was extended to a range of other ketones. DFT calculations suggest an unusual carbyne-centred mechanism, and the better performance displayed by 3a is ascribable to the stabilizing effect provided by the cyanide co-ligand, which is experimentally supported by IR analyses
    corecore