Non-Precious Metal Carbamates as Catalysts for the

Aziridine/CO<sub>2</sub> Coupling Reaction Under Mild Conditions

Giulio Bresciani, a,b Stefano Zacchini, b,c Fabio Marchetti, a,b Guido Pampaloni a,b,\*

<sup>a</sup>Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, I-56124

Pisa, Italy.

<sup>b</sup>CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.

<sup>c</sup>Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale

Risorgimento 4, I-40136 Bologna, Italy.

\* To whom correspondence should be addressed

E-mail address: guido.pampaloni@unipi.it

**Abstract** 

The catalytic potential of a large series of easily-available metal carbamates (based on thirteen

different non-precious metal elements) was explored for the first time in the coupling reaction

between 2-aryl-aziridines and carbon dioxide, working under solventless and ambient conditions

and using tetraalkylammonium halides as co-catalysts. The straightforward synthesis of the novel

[NbCl<sub>3</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>], Nb<sup>Cl</sup>, and [NbBr<sub>3</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>], Nb<sup>Br</sup>, is reported, and these complexes were

fully characterized including by X-ray diffraction. The niobium complex Nb<sup>Cl</sup>, in combination with

NBu<sub>4</sub>I, revealed the best catalyst of the overall series to convert aziridines with small N-alkyl

substituents into the corresponding 5-aryl-oxazolidin-2-ones.

1

## Introduction

Carbon dioxide is an inexpensive, largely available and non-toxic C<sub>1</sub> synthon for organic synthesis and, in this regard, it has received the attention from both academia and industry [1–4]. Despite the high thermodynamic stability and relative kinetic inertness of this molecule [5], CO<sub>2</sub> fixation has been involved in a wide number of processes to obtain valuable chemicals [6–9] and, in particular, the synthesis of five-membered cyclic carbamates (2-oxazolidinones) has been intensively explored. 2-Oxazolidinones are important intermediates in organic chemistry and their core is incorporated in pharmaceutically active substances, such as the antibiotics Linezolid and Tedizolid [10]. Several synthetic strategies to access 2-oxazolidinones have been evaluated making use of CO2, to be combined with either unsaturated compounds [11–13], amino-alcohols, epoxides [14–16] or aziridines [17–19]. The cycloaddition of carbon dioxide to aziridines is one of the most attractive methods (Scheme 1), and it generally requires both a catalyst and a co-catalyst, acting as Lewis acid and nucleophilic activator, respectively [19,20]. In the last decade, a considerable diversity of catalysts has been investigated to promote this reaction, such as N-heterocyclic compounds [21,22], superbases [23,24], ionic liquids [25], metal complexes [19,26], and MOF [17,27]. Despite many efforts to overcome the high energy barrier of the aziridine/CO<sub>2</sub> coupling, it may be necessary to work under high pressure of carbon dioxide and/or high temperature conditions [17,21,28–30]. As a matter of fact, environmentally benign catalytic systems working at ambient temperature and pressure are relatively rare [19,26,31].

**Scheme 1.** Generic synthesis of 2-oxazolidinone from the aziridine/carbon dioxide coupling (R, R' = alkyl or aryl).

Homoleptic metal N,N-dialkylcarbamates constitute a class of molecular compounds of general formula [M(O<sub>2</sub>CNR<sub>2</sub>)<sub>n</sub>]<sub>m</sub>, which are typically accessible from the one-pot reaction between an amine and a metal halide precursor under CO<sub>2</sub> atmosphere [32–34] (Equation 1). This synthesis is rather simple and possesses a general character, so that metal carbamates have been prepared for almost all the transition metals and also several main group elements.

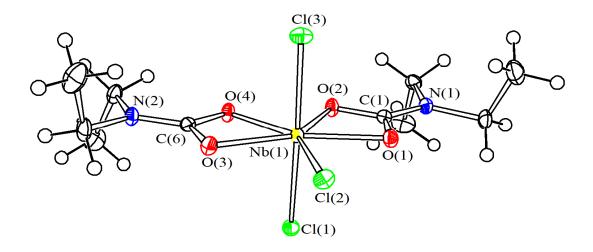
$$MX_n + n CO_2 + 2n NHR_2 \rightarrow [M(O_2CNR_2)_n] + n (NH_2R_2)X$$
 (1)

The monoanionic carbamato ligand is relatively robust [35] and, according to the cases, it may act as monodentate, bidentate or bridging, adapting its coordination fashion to the environment and offering the possibility for the generation of vacant coordination site(s). Moreover, it has been demonstrated that the carbamato ligand is prone to exchange its {CO<sub>2</sub>} fragment with external carbon dioxide, thus enabling CO<sub>2</sub> pre-activation [36,37]. Recently, our group described the use of a range of metal carbamates as active catalysts in carbon dioxide activation reactions, such as the carboxylation of terminal alkynes [38], the cycloaddition to propargyl alcohols [39], and the coupling with epoxides [37,40]. Note that mixed halido-carbamato complexes of high valent metals may provide enhanced catalytic activity compared to the corresponding homoleptic compounds [40,41].

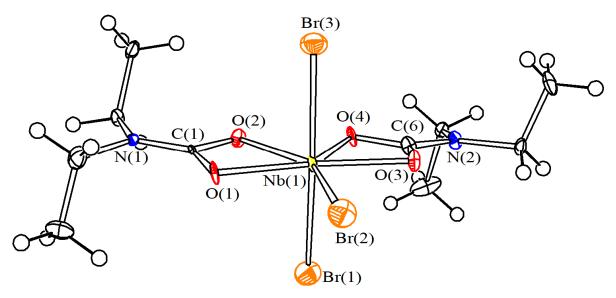
Here, we present a screening study on the use of various metal carbamates, including two unprecedented hybrid niobium(V) halido-carbamates, as catalysts for the reaction between aziridines and CO<sub>2</sub>. Tetrabutylammonium halides have been selected as co-catalysts, accordingly to what frequently described in the literature. All the reactions have been conducted under fixed ambient conditions, i.e. room temperature and atmospheric pressure of carbon dioxide, in the light of their favourable incidence in terms of sustainability.

### Results and discussion

### 1) Synthesis of new niobium halido/carbamato complexes

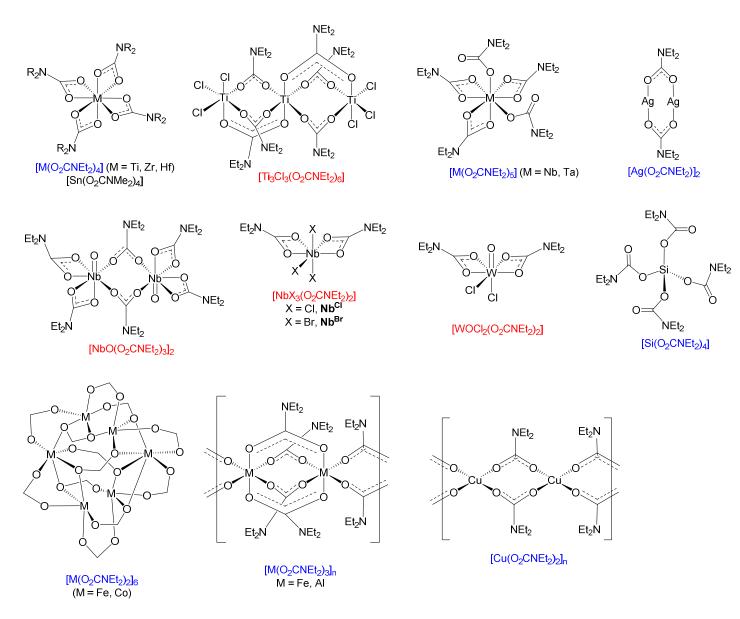

With a view to the possible higher catalytic performance furnished by mixed halido-carbamato complexes (see Introduction), we synthesized the novel Nb<sup>+V</sup> complexes [NbCl<sub>3</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>], **Nb**<sup>Cl</sup>, and [NbBr<sub>3</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>], **Nb**<sup>Br</sup>. The synthesis of **Nb**<sup>Cl</sup> and **Nb**<sup>Br</sup> is non-classical (compare Eq. 1) and consists in the treatment of the commercial metal pentahalides with sodium carbamate in dichloromethane solution (Eq. 2). The metal products were separated from the side-product sodium chloride by filtration, isolated in 67-85% yields and then fully characterized by elemental analysis, IR and multinuclear NMR spectroscopy.

$$NbX_5 + 2 NaO_2CNEt_2 \rightarrow [NbX_3(O_2CNEt_2)_2] + 2 NaCl$$


$$(X = Cl, Nb^{Cl}; X = Br, Nb^{Br})$$
(2)

The IR spectra (solid state) of both Nb<sup>Cl</sup> and Nb<sup>Br</sup> display a characteristic intense absorption at ca. 1620 cm<sup>-1</sup>, ascribable to three equivalent bidentate carbamato ligands [32,33] and suggesting that the two compounds are isostructural. The NMR spectra (in CDCl<sub>3</sub> solution) contain a single set of signals, and the diagnostic <sup>13</sup>C resonance accounting for the bidentate carbamato ligands has been detected at ca. 169 ppm. It should be noted that the <sup>13</sup>C resonance related to the carbamato function is very sensitive to the mode of coordination, in that terminal coordination (monodentate carbamate) usually determines a significant upfield shift with respect to bridging coordination (bidentate carbamate) [32,42,43]. For instance, [Nb(O<sub>2</sub>CNMe<sub>2</sub>)<sub>5</sub>] and [Ta(O<sub>2</sub>CNMe<sub>2</sub>)<sub>5</sub>] comprise both monodentate and bidentate ligands, and the respective <sup>13</sup>C NMR signals fall at ca. 157 ppm and 166 ppm in both complexes [44]. The <sup>93</sup>Nb spectrum of Nb<sup>Cl</sup> exhibits a broad peak centred at -482 ppm [45], whereas a clear <sup>93</sup>Nb spectrum could not be recorded for Nb<sup>Br</sup>, presumably due to ligand exchange phenomena [46]. The X-ray molecular structures of Nb<sup>Cl</sup> and Nb<sup>Br</sup> were elucidated by single-crystal X-ray diffraction studies, and views of the molecules are given in Figures 1 and 2. The two compounds are mononuclear, and their common structural motif is in accordance with the

spectroscopic features: a niobium(V) centre is coordinated to three halides in a *pseudo-mer* arrangement, and two chelating carbamato ligands. The overall geometry can be described as a pentagonal bipyramid, with the two carbamates and one halide occupying equatorial positions, and the other two halides in apical positions. A search in the Cambridge Crystallographic Data Centre showed that *ca.* 12% of the deposited structures containing niobium display a coordination number of seven, whereas the most common coordination number is six (37% of the entries). The structures of [NbCl<sub>3</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>] and [NbBr<sub>3</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>] resemble that previously reported for [NbCl<sub>3</sub>(S<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>] [47,48], including the mutual *trans* arrangement of the ethyl groups.




**Figure 1**. Molecular structure of [NbCl<sub>3</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>], **Nb**<sup>Cl</sup>, with labelling. Displacement ellipsoids are at the 50% probability level. Main bond distances (Å) and angles (°): Nb(1)-Cl(1) 2.3754(5), Nb(1)-Cl(2) 2.3392(5), Nb(1)-Cl(3) 2.3420(5), Nb(1)-O(1) 2.1149(12), Nb(1)-O(2) 2.0802(12), Nb(1)-O(3) 2.0998(12), Nb(1)-O(4) 2.0764(11), C(1)-O(1) 1.300(2), C(1)-O(2) 1.3016(19), C(1)-Nl(1) 1.309(2), C(6)-O(3) 1.303(2), C(6)-O(4) 1.299(2), C(6)-Nl(2) 1.309(2), O(1)-Nb(1)-O(2) 62.46(4), O(3)-Nb(1)-O(4) 62.72(4), Cl(1)-Nb(1)-Cl(3) 175.146(16), Cl(1)-Nb(1)-Cl(2) 91.391(15), Cl(2)-Nb(1)-Cl(3) 93.461(16), O(1)-C(1)-O(2) 113.47(14), O(3)-C(6)-O(4) 113.29(14), sum at C(1) 360.0(2), sum at C(6) 360.0(2), sum at N(1) 360.0(2), sum at N(2) 360.0(2).



**Figure 2**. Molecular structure of [NbBr $_3$ (O $_2$ CNEt $_2$ ) $_2$ ], **NbBr**, with labelling. Displacement ellipsoids are at the 50% probability level. Displacement ellipsoids are at the 50% probability level. Main bond distances (Å) and angles (°): Nb(1)-Br(1) 2.464(2), Nb(1)-Br(2) 2.470(2), Nb(1)-Br(3) 2.502(2), Nb(1)-O(1) 2.107(10), Nb(1)-O(2) 2.071(10), Nb(1)-O(3) 2.092(10), Nb(1)-O(4) 2.075(10), C(1)-O(1) 1.284(17), C(1)-O(2) 1.324(18), C(1)-N(1) 1.297(19), C(6)-O(3) 1.294(19), C(6)-O(4) 1.305(18), C(6)-N(2) 1.313(19), O(1)-Nb(1)-O(2) 62.2(4), O(3)-Nb(1)-O(4) 62.8(4), Br(1)-Nb(1)-Br(3) 176.55(9), Br(1)-Nb(1)-Br(2) 90.59(7), Br(2)-Nb(1)-Br(3) 92.78(7), O(1)-C(1)-O(2) 111.6(12), O(3)-C(6)-O(4) 113.2(12), sum at C(1) 360(2), sum at C(6) 360(2), sum at N(1) 360(2), sum at N(2) 360(2).

Besides the unprecedented **Nb**<sup>Cl</sup> and **Nb**<sup>Br</sup>, a large selection of known metal carbamates has been investigated in the present work, including homoleptic compounds of group 4 and 5 metals, iron, cobalt, copper, silver, and main group elements (Al, Sn, Si), and mixed species with halido and/or oxido co-ligands of titanium(III), niobium(V) and tungsten(VI). The structures of all of these compounds are represented in Figure 3.



**Figure 3**. Structures of metal carbamates investigated in this work (blue: homoleptic compounds; red: mixed-ligand compounds).  $[M(O_2CNEt_2)_3]_n$  (M = Fe, Al) and  $[Cu(O_2CNEt_2)_2]_n$  are polymeric materials.

### 2) Catalytic studies

First, we tested the catalytic activity of carbamato complexes (see Figure 3) in the coupling reaction of 1-methyl-2-phenylaziridine, which was selected as a model substrate, with carbon dioxide from a balloon, in the absence of any solvent. The systems were maintained at room temperature (ca. 25 °C) for 24 hours, and tetrabutylammonium bromide (TBAB) was employed as a co-catalyst. The results of this preliminary study are reported in **Table 1**.

**Table 1**. Conversion of 1-methyl-2-phenylaziridine into 3-methyl-5-phenyloxazolidin-2-one: effect of the catalyst.

| Entry | Catalyst                                                                         | Yield% |
|-------|----------------------------------------------------------------------------------|--------|
| 1     | [Ti(O <sub>2</sub> CNEt <sub>2</sub> ) <sub>4</sub> ]                            | 5      |
| 2     | $[\mathrm{TiCl}_2(\mathrm{O}_2\mathrm{CNEt}_2)_2]$                               | 61     |
| 3     | $[Zr(O_2CNEt_2)_4]$                                                              | 47     |
| 4     | $[Hf(O_2CNEt_2)_4]$                                                              | 19     |
| 5     | [Nb(O <sub>2</sub> CNEt <sub>2</sub> ) <sub>5</sub> ]                            | 41     |
| 6     | $[{\rm NbO}({\rm O_2CNEt_2})_3]$                                                 | 14     |
| 7     | $[\text{NbCl}_3(\text{O}_2\text{CNEt}_2)_2](\textbf{N}\textbf{b}^{\textbf{Cl}})$ | 68     |
| 8     | $[\text{NbBr}_3(\text{O}_2\text{CNEt}_2)_2](\textbf{N}\textbf{b}^{\textbf{Br}})$ | 61     |
| 9     | $[Ta(O_2CNEt_2)_5]$                                                              | 66     |
| 10    | $[WOCl_2(O_2CNEt_2)_2]$                                                          | 33     |
| 11    | $[Fe(O_2CNEt_2)_2]$                                                              | 13     |
| 12    | $[Fe(O_2CNEt_2)_3]$                                                              | 5      |
| 13    | $[Co(O_2CNEt_2)_2]$                                                              | 4      |
| 14    | $[Cu(O_2CNEt_2)_2]$                                                              | 4      |
| 15    | $[Ag(O_2CNEt_2)]$                                                                | 4      |
| 16    | $[Al(O_2CNEt_2)_3]$                                                              | Traces |
| 17    | $[Si(O_2CNEt_2)_4]$                                                              | 61     |
| 18    | $[Sn(O_2CNMe_2)_4]$                                                              | 65     |

Reaction conditions: Aziridine 1.0 mmol, Catalyst 1 mol%, co-catalyst [NBu<sub>4</sub>]Br 5 mol%, T = 25 °C,  $pCO_2 = 1$  atm, t = 24 h. Yield determined by

<sup>1</sup>H NMR using 1,1,2,2-tetrachloroethane as standard.

It can be observed that late transition metal carbamates and the aluminium species are not suitable to promote the examined reaction. Complicated mixtures of products were obtained in low amounts from [Fe(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>], [Fe(O<sub>2</sub>CNEt<sub>2</sub>)<sub>3</sub>] and [Ag(O<sub>2</sub>CNEt<sub>2</sub>)], presumably including low molecular oligomers of polyamine, poly(urethane-amine) and piperazines [49,50].

On the other hand, 3-methyl-5-phenyloxazolidin-2-one was selectively generated in moderate to good yields when some specific high valent metal complexes were employed; especially the Ta<sup>+V</sup> homoleptic carbamate and the hybrid chlorido-carbamato complexes of Ti<sup>IV</sup> and Nb<sup>V</sup> revealed effective (61-68% yields). Moreover, a comparable performance was exhibited by [Si(O<sub>2</sub>CNEt<sub>2</sub>)<sub>4</sub>] and [Sn(O<sub>2</sub>CNMe<sub>2</sub>)<sub>4</sub>]. Interestingly, no traces of the other possible regioisomer, 3-methyl-4-phenyloxazolidin-2-one, were detected in the final mixtures. In alignment with what previously observed in other catalytic processes (see Introduction), halido-carbamato complexes exhibit a superior activity with respect to their homoleptic counterparts (compare runs: 5 with 7 and 8, 1 with 2). This feature might be explained based on a less steric hindrance around the metal centre in the non-homoleptic species, favouring the coordination of the substrate and thus accelerating the reaction pathway. It has to be noted that this is the first time that compounds based on titanium, tantalum, tungsten, silicon and tin are investigated as possible catalysts for the aziridine/CO<sub>2</sub> coupling reaction.

Following the preliminary screening and adopting the same reaction conditions in terms of time, CO<sub>2</sub> pressure and temperature, a selection of active catalytic precursors was further investigated in combination with different tetrabutylammonium halides (**Table 2**). The selected catalysts are good candidates in view of a sustainable process, being based on earth-abundant elements (Si or Sn) or nontoxic transition metals (Nb, Ta) [51]. It was confirmed that 5% molar concentration of TBAB is necessary to achieve satisfying yields of product, using [Si(O<sub>2</sub>CNEt<sub>2</sub>)<sub>4</sub>] and [Sn(O<sub>2</sub>CNMe<sub>2</sub>)<sub>4</sub>]. On

the other hand, these latter catalysts revealed much less performing when combined with tetrabutylammonium chloride (TBAC) or tetrabutylammonium iodide (TBAI).

Among the transition metal compounds, the hybrid complex **Nb**<sup>Cl</sup> worked as the best catalyst. It was tested in combination with all of the three tetraalkylammonium salts (Table 2, runs 14-16), with the idea in mind that the possible exchange between the chloride ligand and the external halide source [52] might induce favourable reaction pathways. As a matter of fact, TBAB and TBAC afforded comparable yields (ca. 70%) of the oxazolidinone, and TBAI provided a better result (86% yield).

**Table 2.** Catalytic conversion of 1-methyl-2-phenylaziridine into 3-methyl-5-phenyloxazolidin-2-one: effect of the co-catalyst.

| Entry | Catalyst                                              | Co-Catalyst (mol%)                          | Yield% |
|-------|-------------------------------------------------------|---------------------------------------------|--------|
| 1     | [Si(O <sub>2</sub> CNEt <sub>2</sub> ) <sub>4</sub> ] | [NBu <sub>4</sub> ]Cl (5)                   | Traces |
| 2     | $[Si(O_2CNEt_2)_4]$                                   | [NBu <sub>4</sub> ]Cl (2)                   | 4      |
| 3     | $[Si(O_2CNEt_2)_4]$                                   | [NBu <sub>4</sub> ]Br (5)                   | 61     |
| 4     | $[Si(O_2CNEt_2)_4]$                                   | [NBu <sub>4</sub> ]Br (2)                   | 41     |
| 5     | $[Si(O_2CNEt_2)_4]$                                   | [NBu <sub>4</sub> ]I (5)                    | 5      |
| 6     | $[Si(O_2CNEt_2)_4]$                                   | [NBu <sub>4</sub> ]I (2)                    | 3      |
| 7     | $[Sn(O_2CNMe_2)_4]$                                   | [NBu <sub>4</sub> ]Cl (5)                   | Traces |
| 8     | $[Sn(O_2CNMe_2)_4]$                                   | [NBu <sub>4</sub> ]Cl (2)                   | 4      |
| 9     | $[Sn(O_2CNMe_2)_4]$                                   | [NBu <sub>4</sub> ]Br (5)                   | 65     |
| 10    | $[Sn(O_2CNMe_2)_4]$                                   | $[\mathrm{NBu_4}]\mathrm{Br}\left(2\right)$ | 47     |
| 11    | $[Sn(O_2CNMe_2)_4]$                                   | [NBu <sub>4</sub> ]I (5)                    | 2      |

| 12 | $[Sn(O_2CNMe_2)_4]$                                                       | [NBu <sub>4</sub> ]I (2)           | 3      |
|----|---------------------------------------------------------------------------|------------------------------------|--------|
| 13 | $[\mathrm{NbCl_3}(\mathrm{O_2CNEt_2})_2]  (\mathbf{Nb^{Cl}})$             | $[NBu_4]Br(5)$                     | 68     |
| 14 | $\mathbf{N}\mathbf{b}^{\mathbf{C}\mathbf{I}}$                             | [NBu <sub>4</sub> ]Br (2)          | 58     |
| 15 | Nb <sup>Cl</sup>                                                          | $[\mathrm{NBu_4}]\mathrm{Cl}\ (5)$ | 70     |
| 16 | $\mathbf{N}\mathbf{b}^{\mathbf{C}\mathbf{l}}$                             | [NBu <sub>4</sub> ]I (5)           | 86     |
| 17 | $[\text{NbBr}_3(\text{O}_2\text{CNEt}_2)_2]  (\textbf{Nb}^{\textbf{Br}})$ | $[NBu_4]Br(5)$                     | 61     |
| 18 | $\mathbf{N}\mathbf{b}^{\mathbf{Br}}$                                      | [NBu <sub>4</sub> ]I (5)           | 53     |
| 19 | $[Ta(O_2CNEt_2)_5]$                                                       | $[NBu_4]Br(5)$                     | 66     |
| 20 | $[Ta(O_2CNEt_2)_5]$                                                       | [NBu <sub>4</sub> ]I (5)           | Traces |

Reaction conditions: Aziridine 1.0 mmol, Catalyst 1 mol%, T = 25 °C,  $pCO_2 = 1$  atm, t = 24 h. Yields determined by <sup>1</sup>H NMR using 1,1,2,2-tetrachloroethane as standard.

According to the outcomes reported in **Table 2**, [NbCl<sub>3</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>] (**Nb**<sup>Cl</sup>), [Si(O<sub>2</sub>CNEt<sub>2</sub>)<sub>4</sub>] and [Sn(O<sub>2</sub>CNMe<sub>2</sub>)<sub>4</sub>], in combination with the respective optimal co-catalyst, were explored for their activity in the coupling of carbon dioxide with two other 1-alkyl-2-phenyl-aziridines (**Table 3**, runs 4-10). The catalytic system **Nb**<sup>Cl</sup>/TBAI emerged as the most performing to convert 1-ethyl-2-phenylaziridine into the corresponding oxazolidinone in a regiospecific manner. Otherwise, the presence of an isopropyl N-substituent prevented the coupling process under the employed mild conditions; some unfavourable impact of the size of the nitrogen substituent on the formation of five-membered oxazolidinones via CO<sub>2</sub> fixation was previously documented [18,22,28]. The **Nb**<sup>Cl</sup>/TBAI combination was successfully employed to extend the synthesis to 3-methyl(ethyl)-5-aryloxazolidin-2-ones bearing different para-substituents on the aryl ring (**Table 3**, runs 11-15).

**Table 3.** Catalytic conversion of 1-alkyl-2-arylaziridines into 3-alkyl-5-aryloxazolidin-2-ones.

|       |    |                 | Co-catalyst                                                             | Yield                 |        |
|-------|----|-----------------|-------------------------------------------------------------------------|-----------------------|--------|
| Entry | X  | R               | Catalyst                                                                |                       | %      |
| 1     | Н  | Me              | [Si(O <sub>2</sub> CNEt <sub>2</sub> ) <sub>4</sub> ]                   | [NBu <sub>4</sub> ]Br | 61     |
| 2     | Н  | Me              | $[Sn(O_2CNMe_2)_4]$                                                     | [NBu <sub>4</sub> ]Br | 65     |
| 3     | Н  | Me              | $[\text{NbCl}_3(\text{O}_2\text{CNEt}_2)_2]  (\textbf{Nb}^{\text{Cl}})$ | [NBu <sub>4</sub> ]I  | 86     |
| 4     | Н  | Et              | $[Si(O_2CNEt_2)_4]$                                                     | [NBu <sub>4</sub> ]Br | 31     |
| 5     | Н  | Et              | $[Sn(O_2CNMe_2)_4]$                                                     | [NBu <sub>4</sub> ]Br | 34     |
| 6     | Н  | Et              | Nb <sup>Cl</sup>                                                        | [NBu <sub>4</sub> ]I  | 53     |
| 7     | Н  | <sup>i</sup> Pr | $[Si(O_2CNEt_2)_4]$                                                     | [NBu <sub>4</sub> ]Br | Traces |
| 8     | Н  | <sup>i</sup> Pr | $[Sn(O_2CNMe_2)_4]$                                                     | [NBu <sub>4</sub> ]Br | Traces |
| 9     | Н  | <sup>i</sup> Pr | $\mathbf{N}\mathbf{b}^{\mathrm{Cl}}$                                    | [NBu <sub>4</sub> ]Br | Traces |
| 10    | Н  | <sup>i</sup> Pr | $\mathbf{N}\mathbf{b}^{\mathrm{Cl}}$                                    | [NBu <sub>4</sub> ]I  | 5      |
| 11    | Me | Me              | Nb <sup>Cl</sup>                                                        | [NBu <sub>4</sub> ]I  | 50     |
| 12    | Me | Et              | $\mathbf{N}\mathbf{b}^{\mathrm{Cl}}$                                    | [NBu <sub>4</sub> ]I  | 41     |
| 13    | Cl | Me              | $\mathbf{N}\mathbf{b}^{\mathrm{Cl}}$                                    | [NBu <sub>4</sub> ]I  | 58     |
| 14    | Cl | Et              | $\mathbf{N}\mathbf{b}^{\mathrm{Cl}}$                                    | [NBu <sub>4</sub> ]I  | 49     |
| 15    | F  | Me              | $\mathbf{N}\mathbf{b}^{\mathrm{Cl}}$                                    | [NBu <sub>4</sub> ]I  | 56     |

Reaction conditions: Aziridine 1.0 mmol, Catalyst 1 mol%, Co-catalyst 5 mol%, T = 25 °C,  $pCO_2 = 1$  atm, t = 24 h. Yields determined by  $^1H$  NMR using 1,1,2,2-tetrachloroethane as standard.

Note that the straightforward synthesis of 3-methyl-5-aryloxazolidinones from aziridines under sustainable conditions is not a trivial task, and actually more expensive and elaborated catalytic systems, as well as more drastic experimental conditions, have been often reported to access the

same products as those efficiently obtained here. Selected examples from the literature since 2018 are compiled in Table 4. The preparation of 5-(4-fluorophenyl)-3-methyloxazolidin-2-one via aziridine/CO<sub>2</sub> coupling is unprecedented.

**Table 4**. Collection of data from the literature for the coupling between carbon dioxide and 2-arylaziridines with N-methyl/ethyl substituents, affording 5-aryl-2-oxazolidinones.

| Aziridine | Catalyst / cocatalyst                                             | T (°C) | p CO <sub>2</sub> (atm) | Reaction time (h) | Yield (%) | Ref. |
|-----------|-------------------------------------------------------------------|--------|-------------------------|-------------------|-----------|------|
| Et N      | Ru <sup>+VI</sup> imidoporphirin<br>complex / NBu <sub>4</sub> Cl | 100    | 6                       | 6                 | 65        | [54] |
| Et N      | carbodicarbene (CDC)                                              | 80     | 20                      | 12                | 75        | [55] |
| CI        | Di-europium complex / DBU                                         | 50     | 1                       | 48                | 83        | [19] |

### **Conclusions**

Metal carbamates are easily available and cost-effective compounds which possess the ability to dynamically activate carbon dioxide, and for this reason have been successfully employed as homogeneous catalytic precursors in some CO<sub>2</sub> activation reactions. Herein, we describe a screening study aimed to assess the potential of carbamates of a vast range of metal elements in the widely investigated coupling reaction of aziridines with carbon dioxide affording five-membered cyclic carbamates. A newly synthesized mononuclear niobium(V) mixed chlorido-carbamato complex revealed the most active catalyst in combination with tetrabutylammonium iodide, confirming the previously observed tendency that non-homoleptic carbamates based on high valent metals possess

a superior catalytic potential compared to the corresponding homoleptic species. The regiospecific synthesis of 3-alkyl-5-aryloxazolidin-2-ones was achieved in good yields from 2-aryl-aziridines with small N-groups (methyl or ethyl). This process is featured by environmentally benign conditions, i.e. the use of simple catalysts based on earth-abundant and/or non-toxic elements, atmospheric pressure of carbon dioxide and room temperature. Remarkably, the syntheses of some of the products here obtained have been recently described according to the same reaction (aziridine/CO<sub>2</sub> coupling), but usually require drastic experimental conditions and/or more elaborated catalytic systems, and are sometimes non-regioselective [19,21,54,55]. On the other hand, the steric hindrance of the aziridine is a limiting factor with reference to the present catalytic systems, since a bulkier group on the nitrogen atom prevents the formation of the related oxazolidinone.

### **Experimental**

### 1) Materials and methods.

Operations were conducted under N<sub>2</sub> atmosphere using standard Schlenk techniques; the reaction vessels were oven-dried at 140 °C prior to use, evacuated (10<sup>-2</sup> mmHg) and then filled with N<sub>2</sub>. Carbon dioxide (99.99%) was purchased from Rivoira, while organic reactants (TCI Europe, Merck or Strem) were commercial products of the highest purity available, stored under N<sub>2</sub> atmosphere as received. Solvents (Merck) were distilled before use over appropriate drying agents. Compounds  $NaO_2CNEt_2$  [56],  $[M(O_2CNEt_2)_4]$  (M = Ti, Zr, Hf) [57],  $[TiCl_2(O_2CNEt_2)_2]$  [42],  $[M(O_2CNEt_2)_5]$  (M = Nb, Ta) [58],  $[NbO(O_2CNEt_2)_3]$  [59],  $[WOCl_2(O_2CNEt_2)_2]$  [56],  $[Fe(O_2CNEt_2)_2]$  [60],  $[Fe(O_2CNEt_2)_3]$  [61],  $[Co(O_2CNEt_2)_2]$  [62],  $[Cu(O_2CNEt_2)_2]$  [63],  $[Ag(O_2CNEt_2)]$  [64], [Al(O<sub>2</sub>CNEt<sub>2</sub>)<sub>3</sub>] [40], [Si(O<sub>2</sub>CNEt<sub>2</sub>)<sub>4</sub>] [65], [Sn(O<sub>2</sub>CNEt<sub>2</sub>)<sub>4</sub>] [66] and 2-arylaziridines [25] were prepared according to literature procedures. IR spectra (650-4000 cm<sup>-1</sup>) were recorded on a Perkin Elmer Spectrum One FT-IR spectrometer, equipped with a UATR sampling accessory. NMR spectra were recorded at 298 K with a Bruker Avance II DRX 400 instrument equipped with a BBFO broadband probe. <sup>1</sup>H chemical shifts (expressed in ppm) were referenced to the residual solvent peaks [67] while chemical shifts for <sup>93</sup>Nb were referenced to external [NEt<sub>4</sub>]NbCl<sub>6</sub>. Yields of oxazolidinones were evaluated on <sup>1</sup>H NMR spectra using 1,1,2,2-tetrachloroethane as internal standard. CHN analyses were performed on a Vario MICRO cube instrument (Elementar). The halide content was determined by the Volhard method [68], by dissolving the solid samples in aqueous KOH at boiling temperature, followed by cooling to room temperature and addition of HNO<sub>3</sub> up to acidic pH.

# 2) Synthesis and characterization of $[NbX_3(O_2CNEt_2)_2]$ (X = Cl, $Nb^{Cl}$ ; X = Br, $Nb^{Br}$ )

The preparation of  $\mathbf{N}\mathbf{b}^{Cl}$  is described in detail, and  $\mathbf{N}\mathbf{b}^{Br}$  was prepared using an analogous procedure.

**[NbCl<sub>5</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>].** A suspension of NbCl<sub>5</sub> (370 mg, 1.37 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 mL) was treated with NaO<sub>2</sub>CNEt<sub>2</sub> (390 mg, 2.80 mmol). The mixture was stirring for 20 hours, then the resulting precipitate (NaCl) was filtered off. The solvent was evaporated under vacuum, and the residue was added of THF (10 mL). This tetrahydrofuran solution was treated with hexane (30 mL), thus the mixture was cooled to ca. -30 °C. The obtained suspension was filtered, and the solid was dried under vacuum affording **Nb**<sup>Cl</sup> (0.50 g, 85% yield) as a moisture-sensitive yellow microcrystalline solid. Anal. Calc. for C<sub>10</sub>H<sub>20</sub>Cl<sub>3</sub>N<sub>2</sub>NbO<sub>4</sub>: C, 27.8; H, 4.7; N, 6.5; Cl, 24.6. Found: C, 28.0; H, 4.6; N, 6.6 %; Cl, 24.3. IR (solid state):  $\tilde{v}$ /cm<sup>-1</sup> = 2977w, 2942w, 1616vs (C=O), 1443w, 1410m, 1382w-m, 1310m, 1261w-m, 1197w-m, 1089m, 1020w-m, 979w, 839s, 799m, 776m-s. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 3.59 (q, 2H, <sup>3</sup>J<sub>HH</sub> = 7.2 Hz, CH<sub>2</sub>); 1.30 (t, 3H, <sup>3</sup>J<sub>HH</sub> = 7.0 Hz, CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 168.7 (C=O); 40.3 (CH<sub>2</sub>); 13.8 (CH<sub>3</sub>). <sup>93</sup>Nb{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$ /ppm = -482 (s,  $\Delta v_{1/2} = 6\cdot10^3$  Hz). Crystals suitable for X-ray analysis were obtained from a THF solution of **5** layered with hexane and stored at  $-30^{\circ}$ C for 5 days.

[NbBr<sub>3</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>], Nb<sup>Br</sup>. Highly moisture sensitive dark-red solid, 67% yield from NbBr<sub>5</sub> (390 mg, 0.79 mmol) and NaO<sub>2</sub>CNEt<sub>2</sub> (220 mg, 1.58 mmol). Anal. Calc. for C<sub>10</sub>H<sub>20</sub>Br<sub>3</sub>N<sub>2</sub>NbO<sub>4</sub>: C, 21.3; H, 3.6; N, 5.0; Br, 42.4. Found: C, 21.5; H, 3.5; N, 5.1; Br, 42.1. IR (solid state):  $\tilde{v}$ /cm<sup>-1</sup> = 2975w, 2934w, 1706w-m, 1621m-s (C=O), 1569s, 1443m-s, 1380s, 1314s-sh, 1260m, 1200m, 1097w-m, 1074m-s, 976w-m, 944vw, 838m, 793m-s. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 3.61 (m, 2H, CH<sub>2</sub>); 1.33 (m, 3H, CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 168.7 (C=O); 40.5 (CH<sub>2</sub>); 14.0 (CH<sub>3</sub>) ppm. Crystals suitable for X-ray analysis were obtained from a THF solution of **Nb**<sup>Br</sup> layered with hexane and stored at  $-30^{\circ}$ C for 5 days.

### 3) X-ray crystallography

Crystals of Nb<sup>Cl</sup> and Nb<sup>Br</sup> suitable for X-ray analysis were collected from the respective THF solutions layered with hexane (THF/Hexane ratio 1:3). Crystal data and collection details are

reported in Table 4. Data were recorded on a Bruker APEX II diffractometer equipped with a PHOTON100 detector using Mo–K $\alpha$  radiation. Data were corrected for Lorentz polarization and absorption effects (empirical absorption correction SADABS) [69]. The structures were solved by direct methods and refined by full-matrix least-squares based on all data using  $F^2$  [70]. Hydrogen atoms were fixed at calculated positions and refined by a riding model. All non-hydrogen atoms were refined with anisotropic displacement parameters. The crystals of 6 are racemically twinned with refined Flack parameter 0.38(2) [71].

**Table 4.** Crystal data and measurement details for [NbCl<sub>3</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>] (**Nb**<sup>Cl</sup>) and [NbBr<sub>3</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>2</sub>] (**Nb**<sup>Br</sup>).

|                                     | Nbci                                                                            | Nb <sup>Br</sup>                                                                |
|-------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Formula                             | C <sub>10</sub> H <sub>20</sub> Cl <sub>3</sub> N <sub>2</sub> NbO <sub>4</sub> | C <sub>10</sub> H <sub>20</sub> Br <sub>3</sub> N <sub>2</sub> NbO <sub>4</sub> |
| FW                                  | 431.54                                                                          | 564.92                                                                          |
| T, K                                | 100(2)                                                                          | 100(2)                                                                          |
| λ, Å                                | 0.71073                                                                         | 0.71073                                                                         |
| Crystal system                      | Monoclinic                                                                      | Monoclinic                                                                      |
| Space group                         | P2 <sub>1</sub> /c                                                              | <i>P</i> 2 <sub>1</sub>                                                         |
| a, Å                                | 15.3038(15)                                                                     | 7.4915(14)                                                                      |
| b, Å                                | 16.5965(16)                                                                     | 12.296(2)                                                                       |
| c, Å                                | 13.8932(14)                                                                     | 9.6832(18)                                                                      |
| $eta,^{\circ}$                      | 90.886(2)                                                                       | 95.837(8)                                                                       |
| Cell Volume, Å <sup>3</sup>         | 3528.3(6)                                                                       | 887.4(3)                                                                        |
| Z                                   | 8                                                                               | 2                                                                               |
| D <sub>c</sub> , g⋅cm <sup>-3</sup> | 1.625                                                                           | 2.114                                                                           |
| μ, <b>mm</b> <sup>-1</sup>          | 1.147                                                                           | 7.444                                                                           |
| F(000)                              | 1744                                                                            | 544                                                                             |
| Crystal size, mm                    | $0.25 \times 0.21 \times 0.14$                                                  | $0.22 \times 0.16 \times 0.12$                                                  |
| θ limits,°                          | 1.331-28.999                                                                    | 2.114-26.000                                                                    |
| Reflections collected               | 56714                                                                           | 8480                                                                            |
| Independent reflections             | 9373 [ $R_{int} = 0.0376$ ]                                                     | $3474 [R_{int} = 0.0625]$                                                       |
| Data / restraints /parameters       | 9373 / 0 / 369                                                                  | 3474 / 43 / 182                                                                 |
| Goodness on fit on F <sup>2</sup>   | 1.089                                                                           | 1.064                                                                           |
| $R_1 (I > 2\sigma(I))$              | 0.0259                                                                          | 0.0545                                                                          |
| wR₂ (all data)                      | 0.0553                                                                          | 0.1496                                                                          |
| Largest diff. peak and hole, e Å-3  | 0.380 / -0.600                                                                  | 2.071 / -1.471                                                                  |

# 4) Reactions between 2-aryl-aziridines and carbon dioxide.

a) General details. The appropriate amounts of catalyst and co-catalyst were introduced into a Schlenk tube. The tube was evacuated with a vacuum pump and then filled with CO<sub>2</sub>. The vacuum/CO<sub>2</sub> sequence was repeated twice. Under a stream of carbon dioxide, the selected aziridine (1 mmol) was added, and the resulting mixture was stirred for 24 hours at room temperature under atmospheric pressure of CO<sub>2</sub> from a balloon. An exact amount of 1,1,2,2-tetrachloroethane (0.2 mL) was added, and an aliquot (ca 0.1 mL) of the mixture was mixed with CDCl<sub>3</sub> (0.5 mL) in an NMR tube. Yields were determined by <sup>1</sup>H NMR spectroscopy using 1,1,2,2-tetrachloroethane as internal standard.

### b) NMR characterization of organic products

1-methyl-2-phenylaziridine. Colourless liquid.  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.37–7.21 (m, 5H, Ph), 2.50 (s, 3H, NMe), 2.28 (m, 1H, CH), 1.91 (d,  $^{3}$ J<sub>HH</sub> = 3.2 Hz, 1H, CH<sub>2</sub>), 1.63 (d,  $^{3}$ J<sub>HH</sub> = 6.7 Hz, 1H, CH<sub>2</sub>).

1-ethyl-2-phenylaziridine. Colourless liquid.  $^{1}$ H NMR (CDCl<sub>3</sub>): δ/ppm = 7.40–7.24 (m, 5H, Ph), 2.53–2.44 (m, 2H, NCH<sub>2</sub>), 2.34 (m, 1H, CH), 1.94 (d,  $^{3}$ J<sub>HH</sub> = 3.2 Hz, 1H, CH<sub>2</sub>), 1.68 (d,  $^{3}$ J<sub>HH</sub> = 6.7 Hz, 1H, CH<sub>2</sub>), 1.26 (t,  $^{3}$ J<sub>HH</sub> = 7.2 Hz, 3H, CH<sub>3</sub>).

*1-isopropyl-2-phenylaziridine*. Colourless liquid.  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.35–7.24 (m, 5H, Ph), 2.40 (dd,  $^{3}$ J<sub>HH</sub> = 3.3 Hz, 3H, NMe), 1.95, 1.71 (d,  $^{3}$ J<sub>HH</sub> = 3.2 Hz, 1H, CH<sub>2</sub>), 1.67 (m,  $^{3}$ J<sub>HH</sub> = 6.2 Hz, 1H, CH<sup>iPr</sup>), 1.26, 1.24 (d,  $^{3}$ J<sub>HH</sub> = 6.3 Hz, 6H, CH<sub>3</sub><sup>iPr</sup>).

1-methyl-2-(p-tolyl)aziridine. Colourless liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.16 (m, 4H, C<sub>6</sub>H<sub>4</sub>); 2.52 (s, 3H, NMe); 2.37 (s, 3H, C<sub>6</sub>H<sub>4</sub>Me); 2.28 (m, 1H, CH); 1.92 (d, <sup>3</sup>J<sub>HH</sub> = 3.2 Hz, 1H, CH<sub>2</sub>); 1.63 (d, <sup>3</sup>J<sub>HH</sub> = 6.7 Hz, 1H, CH<sub>2</sub>).

1-ethyl-2-(p-tolyl)aziridine. Colourless liquid. <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ/ppm = 7.18 (m, 4H, C<sub>6</sub>H<sub>4</sub>); 2.55–2.43 (m, 2H, NCH<sub>2</sub>); 2.38 (s, 3H, C<sub>6</sub>H<sub>4</sub>Me); 2.32 (m, 1H, CH); 1.92 (m, 1H, CH<sub>2</sub>); 1.67 (d,  ${}^{3}J_{HH} = 6.7$  Hz, 1H, CH<sub>2</sub>); 1.26 (t,  ${}^{3}J_{HH} = 7.2$  Hz, 3H, CH<sub>3</sub>).

1-methyl-2-(4-chlorophenyl)aziridine. Colourless liquid.  $^{1}$ H NMR (CDCl<sub>3</sub>): δ/ppm = 7.27–7.14 (m, 4H, C<sub>6</sub>H<sub>4</sub>); 2.48 (s, 3H, NMe); 2.24 (m, 1H, CH); 1.85 (d, 1H, CH<sub>2</sub>,  $^{3}$ J<sub>HH</sub> = 3.0); 1.63 (d, 1H, CH<sub>2</sub>,  $^{3}$ J<sub>HH</sub> = 6.7).

1-ethyl-2-(4-chlorophenyl)aziridine. Colourless liquid.  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.28–7.18 (m, 4H, C<sub>6</sub>H<sub>4</sub>); 2.45 (m, 2H, NCH<sub>2</sub>); 2.29 (m, 1H, CH); 1.86 (d,  $^{3}$ J<sub>HH</sub> = 3.2, 1H, CH<sub>2</sub>); 1.68 (d,  $^{3}$ J<sub>HH</sub> = 6.7 Hz, 1H, CH<sub>2</sub>); 1.21 (t,  $^{3}$ J<sub>HH</sub> = 7.2 Hz, 3H, CH<sub>3</sub>).

1-methyl-2-(4-fluorophenyl)aziridine. Colourless liquid.  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.17, 6.97 (m, 4H, C<sub>6</sub>H<sub>4</sub>); 2.47 (s, 3H, NMe); 2.24 (m, 1H, CH); 1.84 (d, 1H, CH<sub>2</sub>,  $^{3}$ J<sub>HH</sub> = 3.4); 1.60 (d, 1H, CH<sub>2</sub>,  $^{3}$ J<sub>HH</sub> = 6.6).

c) NMR characterization of 5-phenyl-oxazolidin-2-ones

3-methyl-5-phenyloxazolidin-2-one [25,72].  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.41–7.26 (m, 5H, Ph); 5.48 (t,  $^{3}$ J<sub>HH</sub> = 8.6 Hz, 1H, CH); 3.91, 3.44 (t,  $^{3}$ J<sub>HH</sub> = 8.6 Hz, 2H, CH<sub>2</sub>); 2.92 (s, 3H, CH<sub>3</sub>).

3-ethyl-5-phenyloxazolidin-2-one [25,72].  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.29–7.20 (m, 5H, Ph); 5.33 (t,  $^{3}$ J<sub>HH</sub> = 8.7 Hz, 1H, CH); 3.80 (t,  $^{3}$ J<sub>HH</sub> = 8.7 Hz, 1H, CH<sub>2</sub>); 3.30-3.15 (m, 3H, CH<sub>2</sub> + NCH<sub>2</sub>); 1.04 (t,  $^{3}$ J<sub>HH</sub> = 7.2 Hz, 3H, CH<sub>3</sub>).

3-isopropyl-5-phenyloxazolidin-2-one [25,72]. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.38–7.28 (m, 5H, Ph); 5.43 (t, 1H,  ${}^{3}J_{HH}$  = 8.4 Hz, CH); 4.12 (m, 1H, CH<sup>iPr</sup>); 3.84, 3.33 (t,  ${}^{3}J_{HH}$  = 8.6 Hz, 2H, CH<sub>2</sub>); 1.18, 1.12 (d,  ${}^{3}J_{HH}$  = 6.6 Hz, 6H, CH<sub>3</sub><sup>iPr</sup>)

3-methyl-5-(p-tolyl)oxazolidin-2-one [72,73]. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.27-7.21 (m, 4H, C<sub>6</sub>H<sub>4</sub>); 5.46 (t, <sup>3</sup>J<sub>HH</sub> = 8.4 Hz, 1H, CH); 3.90, 3.45 (t, <sup>3</sup>J<sub>HH</sub> = 8.4 Hz, 2H, CH<sub>2</sub>), 2.94 (s, 3H, NCH<sub>3</sub>); 2.38 (s, 3H, C<sub>6</sub>H<sub>4</sub>C*H*<sub>3</sub>) ppm.

3-ethyl-5-(p-tolyl)oxazolidin-2-one [25,72]. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.20-7.13 (m, 4H, C<sub>6</sub>H<sub>4</sub>); 5.39 (t, <sup>3</sup>J<sub>HH</sub> = 8.3 Hz, 1H, CH), 3.83 (t, <sup>3</sup>J<sub>HH</sub> = 8.6 Hz, 1H, CH<sub>2</sub>), 3.38-3.25 (m, 3H, CH<sub>2</sub> + NCH<sub>2</sub>), 2.30 (s, 3H, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>), 1.12 (t, <sup>3</sup>J<sub>HH</sub> = 7.3 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>) ppm.

5-(4-chlorophenyl)-3-methyloxazolidin-2-one [72,73]. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.38-7.28 (m, 4H, C<sub>6</sub>H<sub>4</sub>); 5.45 (t, <sup>3</sup>J<sub>HH</sub> = 8.3 Hz, 1H, CH); 3.91, 3.40 (t, <sup>3</sup>J<sub>HH</sub> = 8.3 Hz, 2H, CH<sub>2</sub>); 2.92 (s, 3H, CH<sub>3</sub>) ppm

5-(4-chlorophenyl)-3-ethyloxazolidin-2-one [25,72].  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.37, 7.29 (d,  $^{3}$ J<sub>HH</sub> = 7.9 Hz, 4H, C<sub>6</sub>H<sub>4</sub>); 5.45 (t,  $^{3}$ J<sub>HH</sub> = 8.3 Hz, 1H, CH); 3.92 (t,  $^{3}$ J<sub>HH</sub> = 8.3 Hz, 1H, CH<sub>2</sub>); 3.44-3.30 (m, 3H, CH<sub>2</sub> + NCH<sub>2</sub>); 1.17 (t,  $^{3}$ J<sub>HH</sub> = 7.3 Hz, 3H, CH<sub>3</sub>) ppm

5-(4-fluorophenyl)-3-methyloxazolidin-2-one [72]. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$ /ppm = 7.36-7.32, 7.11-7.07 (m, 4H, C<sub>6</sub>H<sub>4</sub>); 5.46 (t,  $^{3}$ J<sub>HH</sub> = 8.1 Hz, 1H, CH); 3.90, 3.42 (t,  $^{3}$ J<sub>HH</sub> = 8.4 Hz, 2H, CH<sub>2</sub>); 2.93 (s, 3H, CH<sub>3</sub>) ppm.

### Acknowledgements

The authors thank the University of Pisa for financial support (PRA 2020 39).

### **Supporting Information Available**

NMR and IR spectra of new niobium complexes and of organic compounds. CCDC reference numbers 2062321 (**Nb**<sup>Cl</sup>) and 2062322 (**Nb**<sup>Br</sup>) contain the supplementary crystallographic data for the X-ray studies reported in this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44-1223/336-033; e-mail: deposit@ccdc.cam.ac.uk).

### References

- [1] E. Furimsky, CO<sub>2</sub> Hydrogenation to Methanol and Methane over Carbon-Supported Catalysts, Ind. Eng. Chem. Res. 59 (2020) 15393–15423. https://doi.org/10.1021/acs.iecr.0c02250.
- [2] M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon: From CO<sub>2</sub> to chemicals, materials, and fuels. technological use of CO<sub>2</sub>, Chem. Rev. 114 (2014) 1709–1742. https://doi.org/10.1021/cr4002758.
- [3] W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian, Q. Zhang, Y. Wang, New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO<sub>2</sub> into hydrocarbon chemicals and fuels, Chem. Soc. Rev. 48 (2019) 3193–3228. https://doi.org/10.1039/c8cs00502h.
- [4] J.A. Martens, A. Bogaerts, N. De Kimpe, P.A. Jacobs, G.B. Marin, K. Rabaey, M. Saeys, S. Verhelst, The Chemical Route to a Carbon Dioxide Neutral World, ChemSusChem. 10 (2017) 1039–1055. https://doi.org/10.1002/cssc.201601051.
- [5] K. Müller, L. Mokrushina, W. Arlt, Thermodynamic constraints for the utilization of CO2, Chem. Ing. Tech. (Weinh). 86 (2014) 497–503. https://doi.org/10.1002/cite.201300152.
- [6] Y. Yang, J.W. Lee, Toward ideal carbon dioxide functionalization, Chem. Sci. 10 (2019) 3905–3926. https://doi.org/10.1039/C8SC05539D.
- [7] Q. Liu, L. Wu, R. Jackstell, M. Beller, Using Carbon Dioxide as a Building Block in Organic Synthesis, Nat. Commun. 6 (2015) 1–15. https://doi.org/10.1038/ncomms6933.
- [8] Z. Wang, H. Song, H. Liu, J. Ye, Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects, Angew. Chem. Int. Ed. 59 (2020) 8016–8035. https://doi.org/10.1002/anie.201907443.
- [9] V. Kumaravel, J. Bartlett, S.C. Pillai, Photoelectrochemical Conversion of Carbon Dioxide (CO<sub>2</sub>) into Fuels and Value-Added Products, ACS Energy Lett. 5 (2020) 486–519.

- https://doi.org/10.1021/acsenergylett.9b02585.
- [10] T. Niemi, T. Repo, Antibiotics from Carbon Dioxide: Sustainable Pathways to Pharmaceutically Relevant Cyclic Carbamates, Eur. J. Org. Chem. (2019) 1180–1188. https://doi.org/10.1002/ejoc.201801598.
- [11] P. Brunel, J. Monot, C.E. Kefalidis, L. Maron, B. Martin-Vaca, D. Bourissou, Valorization of CO2: Preparation of 2-Oxazolidinones by Metal-Ligand Cooperative Catalysis with SCS Indenediide Pd Complexes, ACS Catal. 7 (2017) 2652–2660. https://doi.org/10.1021/acscatal.7b00209.
- [12] X. Liu, M.-Y. Wang, S.-Y. Wang, Q. Wang, L.-N. He, In Situ Generated Zinc(II) Catalyst for Incorporation of CO<sub>2</sub> into 2-Oxazolidinones with Propargylic Amines at Atmospheric Pressure, ChemSusChem. 10 (2017) 1210–1216. https://doi.org/10.1002/cssc.201601469.
- [13] M.Y. Wang, Q.W. Song, R. Ma, J.N. Xie, L.N. He, Efficient conversion of carbon dioxide at atmospheric pressure to 2-oxazolidinones promoted by bifunctional Cu(ii)-substituted polyoxometalate-based ionic liquids, Green Chem. 18 (2015) 282–287. https://doi.org/10.1039/c5gc02311d.
- [14] F. Della Monica, A. Buonerba, C. Capacchione, Homogeneous Iron Catalysts in the Reaction of Epoxides with Carbon Dioxide, Adv. Synth. Catal. 361 (2019) 265–282. https://doi.org/10.1002/adsc.201801281.
- [15] G.-M. Liang, P. Xiong, K. Azam, Q.-L. Ni, J.-Q. Zeng, L.-C. Gui, X.-J. Wang, A Discrete Tetrahedral Indium Cage as an Efficient Heterogeneous Catalyst for the Fixation of CO<sub>2</sub> and the Strecker Reaction of Ketones, Inorg. Chem. 59 (2020) 1653–1659. https://doi.org/10.1021/acs.inorgchem.9b02763.
- [16] F.M. Al-Qaisi, A.K. Qaroush, A.H. Smadi, F. Alsoubani, K.I. Assaf, T. Repo, A.F. Eftaiha, CO<sub>2</sub> coupling with epoxides catalysed by using one-pot synthesised, in situ activated zinc ascorbate under ambient conditions, Dalton Trans. 49 (2020) 7673–7679. https://doi.org/10.1039/D0DT01329C.

- [17] X. Wang, W.Y. Gao, Z. Niu, L. Wojtas, J.A. Perman, Y.S. Chen, Z. Li, B. Aguila, S. Ma, A metal-metalloporphyrin framework based on an octatopic porphyrin ligand for chemical fixation of CO<sub>2</sub> with aziridines, ChemComm. 54 (2018) 1170–1173. https://doi.org/10.1039/c7cc08844b.
- [18] P. Sonzini, C. Damiano, D. Intrieri, G. Manca, E. Gallo, A Metal-Free Synthesis of N -Aryl Oxazolidin-2-Ones by the One-Pot Reaction of Carbon Dioxide with N -Aryl Aziridines, Adv. Synth. Catal. 362 (2020) 2961–2969. https://doi.org/10.1002/adsc.202000175.
- [19] Y. Xie, C. Lu, B. Zhao, Q. Wang, Y. Yao, Cycloaddition of Aziridine with CO<sub>2</sub>/CS<sub>2</sub>
  Catalyzed by Amidato Divalent Lanthanide Complexes, J. Org. Chem. 84 (2019) 1951–1958.
  https://doi.org/10.1021/acs.joc.8b02924.
- [20] S. Arshadi, A. Banaei, S. Ebrahimiasl, A. Monfared, E. Vessally, Solvent-free incorporation of CO<sub>2</sub> into 2-oxazolidinones: a review, RSC Adv. 9 (2019) 19465–19482. https://doi.org/10.1039/C9RA00551J.
- [21] A.H. Liu, Y.L. Dang, H. Zhou, J.J. Zhang, X.B. Lu, CO<sub>2</sub> Adducts of Carbodicarbenes: Robust and Versatile Organocatalysts for Chemical Transformation of Carbon Dioxide into Heterocyclic Compounds, ChemCatChem. 10 (2018) 2686–2692. https://doi.org/10.1002/cctc.201800148.
- [22] V.B. Saptal, B.M. Bhanage, N-heterocyclic olefins as robust organocatalyst for the chemical conversion of carbon dioxide to value-added chemicals, ChemSusChem. 9 (2016) 1980–1985. https://doi.org/10.1002/cssc.201600467.
- [23] Y. Wu, G. Liu, Organocatalyzed cycloaddition of carbon dioxide to aziridines, Tetrahedron Lett. 52 (2011) 6450–6452. https://doi.org/10.1016/j.tetlet.2011.09.092.
- [24] Z.Z. Yang, Y.N. Li, Y.Y. Wei, L.N. He, Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO<sub>2</sub> under mild conditions, Green Chem. 13 (2011) 2351–2353. https://doi.org/10.1039/c1gc15581d.
- [25] Z.-Z. Yang, L.-N. He, S.-Y. Peng, A.-H. Liu, Lewis basic ionic liquids-catalyzed synthesis of

- 5-aryl-2-oxazolidinones from aziridines and CO<sub>2</sub> under solvent-free conditions, Green Chem. 12 (2010) 1850–1854. https://doi.org/10.1039/c0gc00286k.
- [26] M. Sengoden, M. North, A. Whitwood, Synthesis of Oxazolidinones using Carbon Dioxide as a C-1 Building Block and an Aluminium-based Catalyst., ChemSusChem. 12 (2019) 3296— 3303. https://doi.org/10.1002/cssc.201901171.
- [27] C.S. Cao, Y. Shi, H. Xu, B. Zhao, A multifunctional MOF as a recyclable catalyst for the fixation of CO2with aziridines or epoxides and as a luminescent probe of Cr(VI), Dalton Trans. 47 (2018) 4545–4553. https://doi.org/10.1039/c8dt00254a.
- [28] S. Arayachukiat, P. Yingcharoen, S.V.C. Vummaleti, L. Cavallo, A. Poater, V.D. Elia, Cycloaddition of CO<sub>2</sub> to challenging N -tosyl aziridines using a halogen-free niobium complex: Catalytic activity and mechanistic insights, Mol. Catal. 443 (2017) 280–285. https://doi.org/10.1016/j.mcat.2017.10.023.
- [29] D. Carminati, E. Gallo, C. Damiano, A. Caselli, D. Intrieri, Ruthenium Porphyrin Catalyzed Synthesis of Oxazolidin-2-ones by Cycloaddition of CO<sub>2</sub> to Aziridines, Eur. J. Inorg. Chem. 2018 (2018) 5258–5262. https://doi.org/10.1002/ejic.201801208.
- [30] Y. Chen, R. Luo, Z. Yang, X. Zhou, H. Ji, Imidazolium-based ionic liquid decorated zinc porphyrin catalyst for converting CO<sub>2</sub> into five-membered heterocyclic molecules, Sustain. Energy Fuels. 2 (2018) 125–132. https://doi.org/10.1039/C7SE00464H.
- [31] Y. Lee, J. Choi, H. Kim, Stereocontrolled, Divergent, Al(lll)-Catalyzed Coupling of Chiral N
   -Aryl Epoxy Amines and CO<sub>2</sub>, Org. Lett. 20 (2018) 5036–5039.
   https://doi.org/10.1021/acs.orglett.8b02186.
- [32] G. Bresciani, L. Biancalana, G. Pampaloni, F. Marchetti, Recent Advances in the Chemistry of Metal Carbamates, Molecules. 25 (2020) 3603. https://doi.org/10.3390/molecules25163603.
- [33] D.B. Dell'Amico, F. Calderazzo, L. Labella, F. Marchetti, G. Pampaloni, Converting Carbon Dioxide into Carbamato Derivatives, Chem. Rev. 103 (2003) 3857–3898.

- https://doi.org/10.1021/cr940266m.
- [34] L. Biancalana, G. Bresciani, C. Chiappe, F. Marchetti, G. Pampaloni, C.S. Pomelli, Modifying bis(triflimide) ionic liquids by dissolving early transition metal carbamates, Phys. Chem. Chem. Phys. 20 (2018) 5057–5066. https://doi.org/10.1039/c7cp07289a.
- [35] L. Biancalana, G. Pampaloni, S. Zacchini, F. Marchetti, Synthesis, characterization and behavior in water/DMSO solution of Ru(II) arene complexes with bioactive carboxylates, J. Organomet. Chem. 869 (2018) 201–211. https://doi.org/10.1016/j.jorganchem.2018.05.020.
- [36] M.H. Chisholm, M.W. Extine, Reactions of transition metal-nitrogen .sigma. bonds. 4.
  Mechanistic studies of carbon dioxide insertion and carbon dioxide exchange reactions involving early transition metal dimethylamido and N,N-dimethylcarbamato compounds, J.
  Am. Chem. Soc. 99 (1977) 792–802. https://doi.org/10.1021/ja00445a021.
- [37] G. Bresciani, M. Bortoluzzi, F. Marchetti, G. Pampaloni, Iron(III) N,N-Dialkylcarbamate-Catalyzed Formation of Cyclic Carbonates from CO<sub>2</sub> and Epoxides under Ambient Conditions by Dynamic CO<sub>2</sub> Trapping as Carbamato Ligands, ChemSusChem. 11 (2018) 2737–2743. https://doi.org/10.1002/cssc.201801065.
- [38] G. Bresciani, F. Marchetti, G. Pampaloni, Carboxylation of terminal alkynes promoted by silver carbamate at ambient pressure, New J. Chem. 43 (2019) 10821–10825. https://doi.org/10.1039/c9nj02203a.
- [39] G. Pampaloni, G. Bresciani, M. Bortoluzzi, C. Ghelarducci, F. Marchetti, Synthesis of α-Alkylidene Cyclic Carbonates via CO<sub>2</sub> Fixation Under Ambient Conditions Promoted by an Easily Available Silver Carbamate, New J. Chem. (2021).
  https://doi.org/10.1039/D0NJ05657J.
- [40] G. Bresciani, F. Marchetti, G. Rizzi, A. Gabbani, F. Pineider, G. Pampaloni, Metal N,N-dialkylcarbamates as easily available catalytic precursors for the carbon dioxide/propylene oxide coupling under ambient conditions, J. CO2 Util. 28 (2018) 168–173. https://doi.org/10.1016/j.jcou.2018.09.023.

- [41] C. Forte, M. Hayatifar, G. Pampaloni, A.M.R. Galletti, F. Renili, S. Zacchini, Ethylene polymerization using novel titanium catalytic precursors bearing N,N-dialkylcarbamato ligands, J. Polym. Sci. Part A Polym. Chem. 49 (2011) 3338–3345. https://doi.org/10.1002/pola.24770.
- [42] M. Bortoluzzi, G. Bresciani, F. Marchetti, G. Pampaloni, S. Zacchini, Synthesis and structural characterization of mixed halide–N,N-diethylcarbamates of group 4 metals, including a case of unusual tetrahydrofuran activation, New J. Chem. 41 (2017) 1781–1789. https://doi.org/10.1039/C6NJ03489F.
- [43] G. Bresciani, M. Bortoluzzi, S. Zacchini, F. Marchetti, G. Pampaloni, Structural Characterization of a Fluorido-Amide of Niobium, and Facile CO<sub>2</sub> Incorporation Affording a Fluorido-Carbamate, Eur. J. Inorg. Chem. 2018 (2018) 999–1006. https://doi.org/10.1002/ejic.201701309.
- [44] M.H. Chisholm, M.W. Extine, Reactions of transition metal-nitrogen .sigma. bonds. 3. Early transition metal N,N-dimethylcarbamates. Preparation, properties, and carbon dioxide exchange reactions, J. Am. Chem. Soc. 99 (1977) 782–792. https://doi.org/10.1021/ja00445a020.
- [45] M. Bortoluzzi, E. Ferretti, F. Marchetti, G. Pampaloni, S. Zacchini, Coordination complexes of niobium and tantalum pentahalides with a bulky NHC ligand, Dalton Trans. 45 (2016) 6939–6948. https://doi.org/10.1039/C6DT00533K.
- [46] M. Jura, W. Levason, R. Ratnani, G. Reid, M. Webster, Six- and eight-coordinate thio- and seleno-ether complexes of NbF5 and some comparisons with NbCl5 and NbBr5 adducts, Dalton Trans. 39 (2010) 883–891. https://doi.org/10.1039/B916336K.
- [47] J.A.M. Canich, F.A. Cotton, The reactivity of M2(μ-Cl)2(μ-SMe2)Cl4(SMe2)2: formation of Ta2(μ-SEt)2(μ-Cl)Cl4(SMe2)2 and NbCl3(S2CNEt2)2, Inorganica Chim. Acta. 159 (1989) 163–168. https://doi.org/10.1016/S0020-1693(00)80561-7.
- [48] R.A. Henderson, D.L. Hughes, A.N. Stephens, The chemistry of niobium and tantalum

- dithiocarbamato-complexes. Part 4. The co-ordination isomers of NbCl3(S2CNEt2)2 and the X-ray crystal structure of [NbCl3(S2CNEt2)2], J. Chem. Soc., Dalt. Trans. (1990) 1097. https://doi.org/10.1039/dt9900001097.
- [49] P. Trinchera, B. Musio, L. Degennaro, A. Moliterni, A. Falcicchio, R. Luisi, One-pot preparation of piperazines by regioselective ring-opening of non-activated arylaziridines, Org. Biomol. Chem. 10 (2012) 1962–1965. https://doi.org/10.1039/c2ob07099e.
- [50] D.J. Darensbourg, J.R. Andreatta, A.I. Moncada, Polymers from Carbon Dioxide: Polycarbonates, Polythiocarbonates, and Polyurethanes, in: Carbon Dioxide as Chem. Feed., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, n.d.: pp. 213–248. https://doi.org/10.1002/9783527629916.ch8.
- [51] N. Bartalucci, F. Marchetti, S. Zacchini, G. Pampaloni, Decarbonylation of phenylacetic acids by high valent transition metal halides, Dalton Trans. 48 (2019) 5725–5734. https://doi.org/10.1039/C9DT00551J.
- [52] F. Calderazzo, P. Pallavicini, G. Pampaloni, P.F. Zanazzi, Heavier halides of early transition elements by halide-exchange reactions. Crystal and molecular structure of [Ph3C]2[Hf2Cl10], J. Chem. Soc., Dalt. Trans. (1990) 2743. https://doi.org/10.1039/dt9900002743.
- [53] W. Chen, L.X. Zhong, X.W. Peng, R.C. Sun, F.C. Lu, Chemical fixation of carbon dioxide using a green and efficient catalytic system based on sugarcane bagasse-an agricultural waste, ACS Sustain. Chem. Eng. 3 (2015) 147–152. https://doi.org/10.1021/sc5006445.
- [54] X. Kang, L. Yao, Z. Jiao, B. Zhao, Two Stable Heterometal-MOFs as Highly Efficient and Recyclable Catalysts in the CO<sub>2</sub> Coupling Reaction with Aziridines, Chem. An Asian J. 14 (2019) 3668–3674. https://doi.org/10.1002/asia.201900712.
- [55] S. Carrasco, A. Sanz-Marco, B. Martín-Matute, Fast and Robust Synthesis of Metalated PCN-222 and Their Catalytic Performance in Cycloaddition Reactions with CO<sub>2</sub>, Organometallics. 38 (2019) 3429–3435. https://doi.org/10.1021/acs.organomet.9b00273.

- [56] G. Bresciani, M. Bortoluzzi, S. Zacchini, A. Gabbani, F. Pineider, F. Marchetti, G. Pampaloni, Synthesis and Structural Characterization of Non-Homoleptic Carbamato Complexes of V V and W VI and Their Facile Implantation onto Silica Surfaces, Eur. J. Inorg. Chem. 2018 (2018) 1176–1184. https://doi.org/10.1002/ejic.201701260.
- [57] F. Calderazzo, S. Ianelli, G. Pampaloni, G. Pelizzi, M. Sperrle, Synthesis of N,N-dialkylcarbamato complexes of Group 4 metals (Ti, Zr, Hf) by the metal chloride-NHR<sub>2</sub>-CO<sub>2</sub> system (R = Et or Pri): crystal and molecular structure of [Hf(O<sub>2</sub>CNPr<sup>i</sup><sub>2</sub>)<sub>4</sub>], J. Chem. Soc., Dalt. Trans. (1991) 693. https://doi.org/10.1039/dt9910000693.
- [58] P.B. Arimondo, F. Calderazzo, U. Englert, C. Maichle-Mössmer, G. Pampaloni, J. Strähle, Preparation and characterization of dialkylcarbamato derivatives of niobium and tantalum, J. Chem. Soc., Dalt. Trans. (1996) 311–319. https://doi.org/10.1039/DT9960000311.
- [59] M. Bortoluzzi, F. Ghini, M. Hayatifar, F. Marchetti, G. Pampaloni, S. Zacchini, Oxido- and sulfidoniobium(V) N,N-diethylcarbamates: Synthesis, characterization and DFT study, Eur. J. Inorg. Chem. (2013) 3112–3118. https://doi.org/10.1002/ejic.201300219.
- [60] D. Belli Dell'Amico, L. Labella, F. Marchetti, P. Mastrorilli, S. Samaritani, S. Todisco, Oxidation by dioxygen of manganese(II) and iron(II) complexes, Polyhedron. 65 (2013) 275– 281. https://doi.org/10.1016/j.poly.2013.08.011.
- [61] D. Belli, D. Amico, D. Boschi, F. Calderazzo, S. Ianelli, L. Labella, F. Marchetti, G. Pelizzi, E. Guy, F. Quadrelli, N, N-Dialkylcarbamato m-oxo derivatives of iron (III), Inorganica Chim. Acta. 302 (2000) 882–891.
- [62] D. Belli Dell'Amico, F. Calderazzo, B. Giovannitti, G. Pelizzi, NN-Dialkylcarbamato-complexes of Cobalt(II), J. Chem. Soc., Dalt. Trans. (1984) 647–652.
- [63] E. Agostinelli, D. Belli Dell'Amico, F. Calderazzo, D. Fiorani, G. Pelizzi, Synthesis, properties and crystal and molecular structure of Cu<sub>2</sub>(O<sub>2</sub>CNEt<sub>2</sub>)<sub>4</sub> 2NHEt<sub>2</sub>, Gazz. Chim. Ital. 188 (1988) 729–740.
- [64] R. Alessio, D.B. Dell'Amico, F. Calderazzo, U. Englert, A. Guarini, L. Labella, P. Strasser,

- N,N-Dialkylcarbamato Complexes of the d10 cations of copper, silver, and gold, Helv. Chim. Acta. 81 (1998) 219–230. https://doi.org/10.1002/hlca.19980810204.
- [65] D. Belli Dell'Amico, F. Calderazzo, M. Dell'Innocenti, B. Guldenpfennig, S. Ianelli, G. Pelizzi, P. Robino, N,N-Dialkylcarbamates of Silicon and Aluminium, Gazz. Chim. Ital. 123 (1993) 283–288.
- [66] L. Abis, D.B. Dell'Amico, F. Calderazzo, R. Caminiti, F. Garbassi, S. Ianelli, G. Pelizzi, P. Robino, A. Tomei, N,N-Dialkylcarbamato complexes as precursors for the chemical implantation of metal cations on a silica support. Part I. Tin, J. Mol. Catal. A Chem. 108 (1996) L113–L117. https://doi.org/10.1016/1381-1169(96)00032-5.
- [67] G.R. Fulmer, A.J.M. Miller, N.H. Sherden, H.E. Gottlieb, A. Nudelman, B.M. Stoltz, J.E. Bercaw, K.I. Goldberg, NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist, Organometallics. 29 (2010) 2176–2179. https://doi.org/10.1021/om100106e.
- [68] D.A. Skoog, D.M. West, F.J. Holler, Fundamentals of Analytical Chemistry, in: Fundam. Anal. Chem., 7th ed., Thomson Learning, Inc., Stamford, Connecticut, USA, 1996.
- [69] Sheldrick, G. M. SADABS-2008/1 Bruker AXS Area Detector Scaling and Absorption Correction, Bruker AXS: Madison, Wisconsin, USA, 2008., (n.d.).
- [70] G.M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, Acta Crystallogr. Sect. A Found. Crystallogr. 71 (2015) 3–8. https://doi.org/10.1107/S2053273314026370.
- [71] H.D. Flack, On enantiomorph-polarity estimation, Acta Crystallogr. Sect. A Found. Crystallogr. 39 (1983) 876–881. https://doi.org/10.1107/S0108767383001762.
- [72] G. Bresciani, E. Antico, G. Ciancaleoni, S. Zacchini, G. Pampaloni, F. Marchetti, Bypassing the Inertness of Aziridine/CO<sub>2</sub> Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions, ChemSusChem. (2020). https://doi.org/10.1002/cssc.202001823.

[73] F. Zhou, S.L. Xie, X.T. Gao, R. Zhang, C.H. Wang, G.Q. Yin, J. Zhou, Activation of (salen)CoI complex by phosphorane for carbon dioxide transformation at ambient temperature and pressure, Green Chem. 19 (2017) 3908–3915.

https://doi.org/10.1039/c7gc01458a.