
Bypassing the Inertness of Aziridine/CO₂ Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions

Dr. Giulio Bresciani, Emanuele Antico, Prof. Gianluca Ciancaleoni, Prof. Stefano Zacchini, Prof. Guido Pampaloni, Prof. Fabio Marchetti

The largely investigated catalytic process affording 5-aryl-2-oxazolidinones by the two-step assembly of a C_2 precursor with primary amine and carbon dioxide is replaced by the catalyst-free, direct addition of the amine/CO₂ adduct to the C_2 unit in isopropanol or water.

Bypassing the Inertness of Aziridine/CO₂ Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions

Dr. Giulio Bresciani,^{a,b,§} Emanuele Antico,^{a,§} Prof. Gianluca Ciancaleoni,^{a,b,*} Prof. Stefano Zacchini,^{b,c} Prof. Guido Pampaloni,^{a,b,*} Prof. Fabio Marchetti ^{a,b,*}

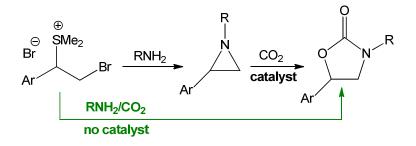
^{*a*} Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.

^b CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.

^c Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.

Abstract

The development of sustainable synthetic routes to access valuable oxazolidinones via CO₂ fixation is an active research area, and the aziridine/carbon dioxide coupling has aroused a considerable interest. This reaction is featured by a high activation barrier, so to require a catalytic system, and may present some other critical issues. Here, we describe the straightforward gram-scale synthesis of a series of 5aryl-2-oxazolidinones at ambient temperature and atmospheric CO₂ pressure, in the absence of any catalyst/co-catalyst. The key to this innovative procedure consists in the direct transfer of the preformed amine/CO₂ adduct (carbamate) to common aziridine precursors (dimethylsulfonium salts), replacing the classical sequential addition of amine (intermediate isolation of aziridine) and then CO₂. The reaction mechanism has been investigated by NMR spectroscopy and DFT calculations applied to model cases.


Keywords: carbon dioxide activation; sustainability; catalyst free organic synthesis; oxazolidinones; aziridines.

Introduction

Carbon dioxide is a nontoxic and ubiquitous substance associated to environmental issues, and its utilization as a C₁ synthon for organic synthesis, replacing hazardous compounds, is an ultimate goal of research, in the perspective of a sustainable world.^[1] In particular, oxazolidinones are five-membered heterocyclic compounds that find important applications for their biological activity ^[2] and as synthetic precursors to various natural and bioactive compounds.^[3] The recent years have witnessed an intense investigation aimed to develop new straightforward synthetic processes to access such fine chemicals exploiting CO₂ fixation routes.^[1b,f,2a,4] All of the reported methods require the use of a catalyst unless high CO₂ pressure or supercritical carbon dioxide is employed.^[5] Thus, unsaturated amines,^[6,7]

haloamines ^[8] and amino-alcohols ^[6d,9] have been investigated for their cyclization reactions with CO₂ to afford 2-oxazolidinones; even three-component systems may be effective, and in this regard, several epoxide/amine,^[10] alkyne/amine,^[11] and alkene/amine ^[12] combinations have been considered. Repo and co-workers demonstrated that a series of N-aryl-2-oxazolidinones are accessible from the one-pot carboxylation of aniline/1,2-dibromoethane in organic solvents under mild conditions.^[13] In this scenario, the coupling of CO₂ with aziridines remains an intriguing and intensively investigated approach.^[1b,g,6d,14] However, this reaction is featured by a high activation barrier.^[15] therefore both metal^[16] and organic catalysts ^[17] have been explored for this purpose. It should be remarked that the engagement of pressurized carbon dioxide is usually necessary, instead examples of efficient aziridine/CO₂ coupling at ambient temperature and pressure are rare and inevitably associated to either a catalyst,^[18] specialized equipment ^[19] or limited substrate scope.^[20] Furthermore, the catalytic systems may present some critical issues in terms of catalyst loading and the need for a halide co-catalyst (Lewis base) and toxic solvents.^[14] It is quite common in the literature that aziridines employed for the cyclization reaction with CO₂ are prepared with a convenient procedure whereby a sulfonium bromide salt, derived from styrene or related ring-substituted species, provides the C2 unit of the three membered heterocycle (Scheme 1).^[16a-b,17a-c,21] This protocol allows to access a variety of 2-arylaziridines, and the catalysed conversion into the corresponding aryl-oxazolidinones follows. In principle, two possible regioisomers can be finally obtained, bearing the substituted ring carbon bound to either oxygen (5-aryl-2-oxazolidinone) or nitrogen (4-aryl-2-oxazolidinone), and full regioselectivity is not often realisable.^[14,16a-b,22] Looking at the synthetic route in Scheme 1, we wondered whether the two-step incorporation of the carbamato unit $\{OC(=O)NR\}^{[23]}$ (from RNH₂ and CO₂) within the final five-membered ring could occur in one pot, avoiding the intermediate aziridine step. Our idea stemmed from the largely documented evidence that carbon dioxide and amines easily form carbamato adducts.^[24] Thus, the present work describes a novel and simple CO₂-fixation strategy to synthesize 5aryl-2-oxazolidinones bypassing the inertness of the aziridine/carbon dioxide system: exceptional

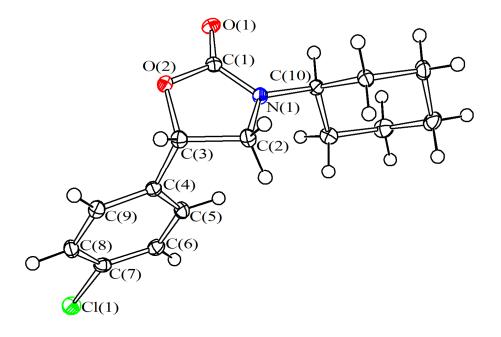
simplicity and increased sustainable value with respect to existing procedures are guaranteed by operating at ambient conditions (ambient temperature, atmospheric CO₂ pressure) and the complete absence of any catalyst/co-catalyst.

Scheme 1. Black: widely investigated two-step synthetic pathway to 5-aryl-2-oxazolidinones via aziridine/ CO_2 coupling using a variety of catalytic systems and operating at variable reaction conditions; Green: procedure described in this work (ambient temperature and CO_2 pressure; solvent = isopropanol or water; absence of metal/catalyst/nucleophile; full regioselectivity).

Results and discussion

1. Synthesis and characterization of compounds.

In order to obtain 5-aryl-2-oxazolidinones (gram-scale synthesis), deaerated isopropanol saturated with carbon dioxide was left reacting with the primary amine up to completion. Following addition of the sulfonium salt (1-7) in an optimal 1:4 molar ratio with respect to the amine, the mixture was stirred for 24-48 hours at ambient temperature under CO₂ atmosphere from a balloon. The desired products 8-14, except 8g, 8h and 10g, were generally isolated after work-up in good to excellent yields (Table 1). In comparison, the use of water as solvent required 6 equivalents of the amine and longer reaction times to achieve satisfying yields (see Table S1 in the Supporting Information for details). Nonetheless, water revealed to be the appropriate choice to incorporate hydrazine and ethylenediamine, since the carbamates of these amines are not soluble in isopropanol, and thus 8g, 8h and 10g were obtained. The reaction leading to 8b was selected as a model one to test further reaction solvents, and isopropanol resulted to be the best option (see SI, page S10). A comparative view of yields after variable times (Table S1) suggests that electronic and steric factors associated to the amine R substituent are

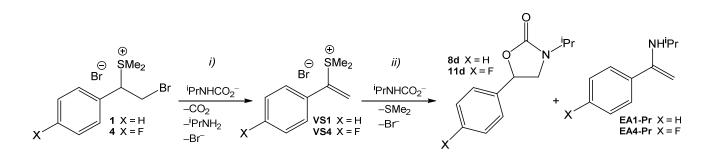

influencing, and the best results are achieved with a compromise of electron donor properties and bulkiness. For instance, R = Me is beneficial compared to R = H, while lower yields have been achieved with R = Cy, and our attempts to obtain oxazolidinones from tert-butylamine and aniline were not successful.

x-	Br	⊕ SMe ₂	, Br RNH ₂ /CO ₂ RT, 24-48 h -2HBr -SMe ₂	×		N ^R
		X	R		Time (h)	
				0	40	[a]
	1	Н	H	<u>8a</u>	48	62
			CH ₃	8b	24	96
			CH ₂ CH ₃	8C	48	91
			CH(CH ₃) ₂	8d	48 48	65 60
			Cy CH-Db	8e		
			CH ₂ Ph NH ₂	<u>8f</u> 8g	<u>48</u> 48	74 87 ^[b]
			CH ₂ CH ₂ NH ₂	8h		71 ^[b]
					48	
			CH ₂ CH ₂ OH	8i	48	95
	2	CH₃	Н	9a	48	58
			CH₃	9b	24	68
			CH ₂ CH ₃	9c	48	84
			CH(CH ₃) ₂	9d	48	50
			Су	9e	48	44
			CH ₂ Ph	9f	48	68
	3	CI	Н	10a	48	67
		•.	CH ₃	10b	24	92
			CH ₂ CH ₃	10c	48	87
			CH(CH ₃) ₂	10d	48	79
			Cy	10e	48	69
			CH ₂ Ph	10f	48	87
			NH ₂	10g	48	88 ^[b]
			CH(CH ₂) ₂ CH ₃	10h	48	88
	4	F	H	<u>11a</u>	48	65
			CH ₃	11b	24	92
				<u>11d</u>	48	72
			CH(CH ₂) ₂ CH ₃	11h	48	82
	5	OMe	CH₃	12b	24	98
		-	CH ₂ CH ₃	12c	48	92
			-	-		
	6	NO ₂	CH₃	13b	24	98
			CH₂CH ₃	13c	48	92

7	CO ₂ Me	CH₃	14b	24	89
		CH₂CH ₃	14c	48	67

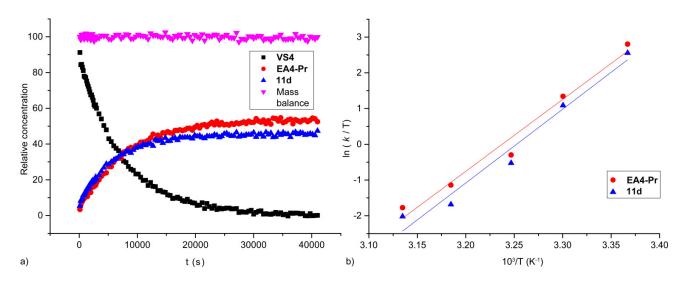
Table 1. Direct synthesis of 5-aryl-2-oxazolidinones from (2-bromo-1-arylethyl)dimethylsulfonium bromide, primary amines (4 eq. with respect to **1-7**; Cy = cyclohexyl, C_6H_{11}) and CO_2 in isopropanol. T = 298 K, $pCO_2 = 1$ atm. ^[a]Yields referred to isolated products. ^[b]Solvent H₂O, 6 eq. of amines with respect to **1,3**.

All the compounds **8-14** were fully characterized by elemental analysis, IR and multinuclear NMR spectroscopy. According to the respective ¹H NMR spectra, **8-14** are exclusively obtained as a single regioisomer (no traces of 4-aryl-2-oxazolidinones). In addition, the molecular structures of **10a** and **10e** were elucidated by single-crystal X-ray diffraction studies; the representative structure of **10e** is shown in Figure 1, while a view of **10a** is supplied as Supporting Information (Figure S1).


Figure 1. Molecular structure of **10e**, with labelling. Displacement ellipsoids are at the 50% probability level. H-atoms have been omitted for clarity. Main bond distances (Å) and angles (°): C(1)-O(1) 1.2124(19), C(1)-O(2) 1.3663(18), C(1)-N(1) 1.3465(19), N(1)-C(2) 1.4522(18), C(3)-O(2) 1.4695(18), C(2)-C(3) 1.534(2), C(3)-C(4) 1.507(2), C(7)-Cl(1) 1.7429(15), N(1)-C(10) 1.4633(19), O(2)-C(1)-N(1) 121.39(13), C(1)-N(1)-C(2) 112.21(12), N(1)-C(2)-C(3) 101.24(12), C(2)-C(3)-O(2) 103.56(11), C(3)-O(2)-C(1) 109.09(11), C(2)-C(3)-C(4) 116.07(13).

Note that **8a-g**, **9a-c**, **9e**, **10a-c**, **10e**, **10h** and **11a-b**, **12b-c** and **14b** were all previously synthesized by means of a catalytic system, often under not mild conditions; here, synthesis and characterization of

these compounds are provided as Supporting Information. Instead, **8h-i**, **9d**, **9f**, **10d**, **10f-g**, **11d**, **11h**, **13b-c** and **14c** are reported here for the first time (see Experimental). In particular, the classical procedure to access **8h-i** may be challenging due to elaborated protocols required for the preparation of the respective aziridine precursors,^[25] or side polymerization reactions favoured by the presence of the alcohol function.^[26]

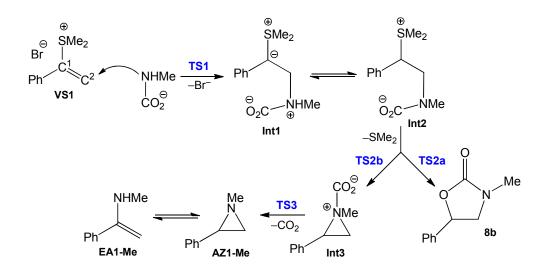

The route reported here consists in the preliminary formation of a CO₂/amine adduct (carbamate), followed by assembly of the latter with the C₂ unit supplied by the (2-bromo-1-aryl)dimethylsulfonium bromide reagent.^[27] This direct synthesis of 5-aryl-2-oxazolidinones from **1-7** appears more convenient than the two-step route via isolation of aryl-aziridines and subsequent catalysed aziridine/CO₂ coupling (Scheme 1),^[21b,28] since it avoids high temperature and pressure conditions, saves solvents and materials otherwise necessary for the synthesis of a catalyst and the isolation/purification of the intermediate aziridine, and may be favourable in terms of E-factor metric. For sake of comparison, calculated E-factor for the synthesis of **8c** from **1**/NH₂Et in isopropanol is approximately 2.2, while it is ca. 2.6 following the procedure recently reported by North and co-workers^[16b] (see SI for details).

In order to investigate mechanistic and kinetic aspects, the reactions leading to **8d** and **11d** were monitored by NMR spectroscopy (see NMR studies in the SI). Thus, an excess of carbamate (from $NH_2^{i}Pr/CO_2$) in aqueous solution was added to the precursor (**1** and **4**, respectively) in D₂O in an NMR tube. ¹H and 2D-HMBC experiments revealed the progressive formation of (1-arylvinyl)dimethylsulfonium salts (**VS1**, **VS4**),^[29] promoted by the basicity of the carbamate (Scheme 2, step *i*). This finding is in alignment with previous reports on the reactivity of **1** with Brönsted bases.^[30]

Scheme 2. NMR-detected steps of the reaction of (2-bromo-1-aryl)dimethylsulfonium bromide with *N*-isopropyl carbamate in D_2O or DMSO-d₆. In D_2O , **EA** are not detected and **8d/11d** separate as an oily phase.

Due to severe resonance broadening determined by the separation of an organic phase containing the oxazolidinone product from the aqueous medium,^[31] we repeated the NMR study in DMSO-d₆, where 8d and 11d are soluble. Thus, the reaction of 1/4 with NH₂ⁱPr/CO₂ proceeded much faster than in D₂O, affording almost immediately VS1/VS4 (Figures S2-S5), which then slowly converted into two different species (Scheme 2, step ii): one corresponded to 8d/11d, while the second species was identified as an enamine (EA1-Pr/EA4-Pr). Such enamines are featured by two diagnostic ¹H NMR signals (e.g. for EA4-Pr at 5.49 and 4.98 ppm) correlating with the same carbon in the ¹³C spectrum (107.4 ppm); in addition, a 2D HMBC experiment highlighted that the amino-substituent is geminal with respect to the phenyl ring, without any other long-range contact (Figures S6-S10). The kinetic profile for the reaction leading to **11d** (in DMSO-d₆) could be elucidated by ¹⁹F NMR spectroscopy in the 297-319 K temperature range. The trend of [11d] and [EA4-Pr] concentrations as a function of time is fitted as an exponential growth ($R^2 > 0.920$ in every case; Figures 2A and S11a-d), providing the values of the reaction kinetic constants at different temperatures (Table 2). Fitting the data with the Eyring equation, the linearity is quite good ($R^2 > 0.958$; Figure 2B), and the activation enthalpies and entropies are comparable for the two products (11d: $\Delta H^{\dagger} = 10.4 \pm 1.1$ kcal mol⁻¹, $\Delta S^{\dagger} = -38 \pm 6$ cal $mol^{-1} K^{-1}$; **EA4-Pr**: $\Delta H^{\ddagger} = 10.2 \pm 1.0 \text{ kcal mol}^{-1}$, $\Delta S^{\ddagger} = -40 \pm 7 \text{ cal mol}^{-1} K^{-1}$).

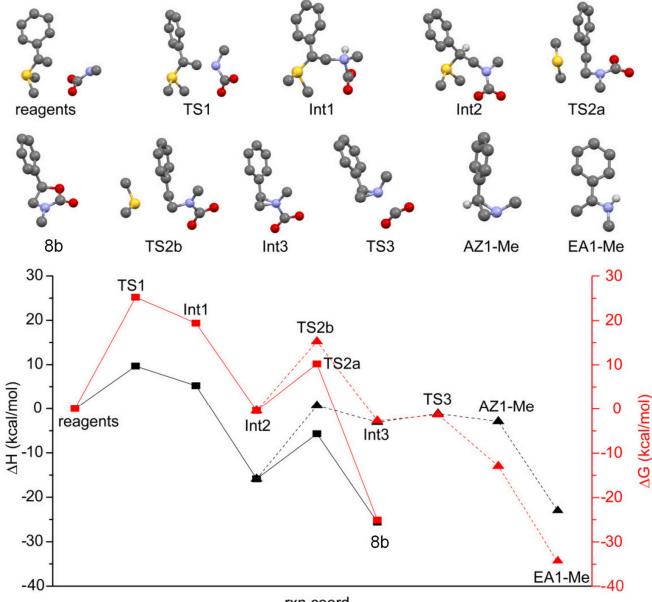
Figure 2. a) Concentration of intermediate (**VS4**) and products (**11d** and **EA4-Pr**) along the reaction of **4** with NH_2iPr/CO_2 in DMSO-d₆, as a function of time (T = 297 K); b) Eyring plot related to **11d** and **EA4-Pr** (R² = 0.964 and 0.959, respectively).


Table 2. Kinetic reaction constants at different temperatures (solvent: DMSO-d₆).

T (K)	$k_{8c}(s^{-1})$	$k_{\mathrm{EA4-Pr}}(\mathrm{s}^{-1})$
297	4900 ± 230	3800 ± 150
303	1160 ± 25	900 ± 25
308	228 ± 24	182 ± 7
313	100 ± 5	58 ± 2
319	54 ± 4	42 ± 3

DFT calculations.

The reaction affording **8b**, via the preliminary formation of **VS1**,^[32] was chosen as a model for detailed


DFT calculations, and the overall, proposed pathway is shown in Scheme 3.

Scheme 3. Proposed DFT mechanism for the reaction of dimethyl(1-phenylvinyl)sulfonium salt **VS1** (from 1, see Scheme 2) with NH_2Me/CO_2 ; relevant transition states in blue; water as solvent (conductor-like polarisable continuum model).

According to the DFT-computed energies (Figure 3), the rate determining step is the initial nucleophilic addition of the carbamato nitrogen to the less hindered alkenic carbon of **VS1** (C²), featured by an activation enthalpy of 9.6 kcal mol⁻¹. Limited to this key step, the calculation was repeated on the reaction of **VS4** with ⁱPrNHCO₂⁻ (DMSO as solvent, Scheme 2): the activation enthalpy resulted 12.9 kcal mol⁻¹, i.e. in reasonable agreement with the experimental value (10.4 ± 1.1 kcal mol⁻¹, see above).^[33] While any alternative attack to C¹ is prohibitive ($\Delta G^i = 35$ kcal mol⁻¹), C²-O coupling involving one carbamato oxygen is theoretically possible ($\Delta H^i = 9.1$ kcal mol⁻¹), but the resulting species seems unable to evolve to any product. The intramolecular proton transfer converting **Int1** into **Int2** occurs through a high-energy transition state ($\Delta G^i = 40.3$ kcal mol⁻¹), therefore it is presumably assisted by the excess of carbamate in the solution. The subsequent C-O bond forming cyclization (**TS2a**) yields **8b** and resembles a previously proposed cyclization for the formation of oxazolidinones from alkenes, chloramine-T and CO₂.^[34] The competitive, presumable formation of the enamine **EA1-Me** from **Int2** parallels the experimentally observed formation of **EA1-Pr** and **EA4-Pr** in DMSO (Scheme 2), and may be explained with a ring closure by the nitrogen atom (**TS2b**). The

resulting aziridine **AZ1-Me** can rearrange to **EA1-Me** ($\Delta G^{\dagger} = 22 \text{ kcal mol}^{-1}$). In general, the route via **TS2b** in water is probably disfavoured since the various equilibria are shifted toward the oxazolidinone product, separating as an oily phase from the aqueous reaction medium where instead enamines of the type CH₂=C(Ar)(NHR) are expected to be soluble.^[35] According to ¹H NMR analyses of the crude mixtures, a minor amount of the relevant aziridine (<5%) is generally a side-product of the formation of **8-14**, however this fact might be most properly related to the direct reaction of the amine with **1-7**.

rxn coord.

Figure 3. (Down) DFT-computed energy paths for the formation of **8b** and **EA1-Me** from **VS1** and NH₂Me/CO₂. (Up) DFT-optimized geometries of the species involved in the mechanism; for the sake of clarity, most of hydrogen atoms have been omitted.

Alternative, hypothetical reaction pathways were carefully examined by DFT calculations (Scheme S1): all of them exhibit higher activation barriers and are thus ruled out at ambient temperature (Figures S12-S14).

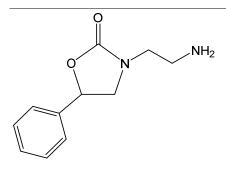
Conclusions

The synthesis of valuable oxazolidinones from the coupling of aziridines with CO₂ has aroused a notable interest: the use of a catalytic system has been usually taken for granted, often associated to high CO₂ pressure and/or high temperature, and many efforts have been addressed to develop suitable metal catalysts pointing towards a more sustainable process. Herein, we have reported a novel method to access thirty-three 5-aryl-oxazolidinones (twelve reported for the first time) in a gram-scale, consisting in the preliminary facile fixation of CO₂ with NH₂R, and subsequent reaction of the resulting carbamate with a C₂ synthon. The latter is widely employed in the literature to obtain aryl-oxazolidinones, but through a two-step route with the intermediate isolation of 2-aryl-aziridines. Our innovative method overcomes the inertness of the aziridine/CO₂ system, and therefore does not require any type of promoter (catalyst or ring-opening nucleophile) and allows to operate under ambient temperature and atmospheric CO₂ pressure. Moreover, avoiding the aziridine-forming step is beneficial even considering that aziridines are toxic, potentially carcinogenic chemicals.^[14,36]

Experimental

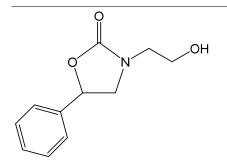
1. Materials and methods. CO_2 (99.99%) was purchased from Rivoira, while organic reactants (TCI Europe or Merck) were commercial products of the highest purity available, stored under N_2 atmosphere as received. Compounds **1-7** were prepared according to the literature,^[29] and their NMR

characterization is provided as Supporting Information. Chromatographic separations were carried out on silica gel (TCI Europe; pore size 60 Å, 70 – 230 mesh). Infrared spectra of solid samples (650-4000 cm⁻¹) were recorded on a Perkin Elmer Spectrum One FT-IR spectrometer, equipped with a UATR sampling accessory. NMR spectra were recorded at 298 K on a Bruker Avance II DRX400 instrument equipped with a BBFO broadband probe. Chemical shifts (expressed in parts per million) are referenced to the residual solvent peaks (¹H, ¹³C),^[37] or to external standard (¹⁹F, CFCl₃). ¹H and ¹³C NMR spectra were assigned with the assistance of ¹H-¹³C (*gs*-HSQC and *gs*-HMBC) correlation experiments.^[38] Elemental analyses were performed with a Vario MICRO cube instrument (Elementar).

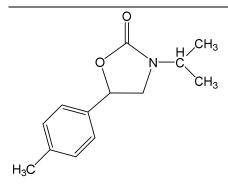

2. Synthesis and characterization of new 5-aryl-oxazolidin-2-ones.

Procedure A. A round bottom flask (volume = 100 mL) containing 30 mL of isopropanol was evacuated and then filled with CO₂. The selected amine (4.0 eq. respect to 1-7) was added. The mixture was stirred until gas absorption ceased, and 1-7 was subsequently added. A balloon (volume = ca. 1 L) filled with CO₂ was connected to the flask, thus the mixture was stirred for 24-48 hours under a constant pressure of CO₂. The solvent was removed under reduced pressure and the oily residue was dissolved in the minimum volume of ethyl acetate, and this solution was charged on a silica column. A mixture of ethyl acetate and petroleum ether (40–60°C) (from 1:10 to 1:6 v/v), added of triethylamine (5% v/v), was used as eluent to collect the fraction corresponding to the desired product.

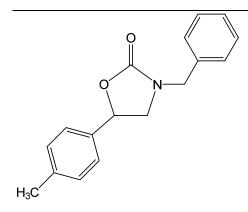
Procedure B. A round bottom flask (volume = 100 mL) containing 30 mL of H₂O was evacuated and then filled with CO₂. The selected amine (6.0 eq. respect to 1-7) was added. The mixture was stirred until gas absorption ceased, and 1-7 was subsequently added. A balloon (volume = 1 L) filled with CO₂ was connected to the flask, thus the mixture was stirred for 24-96 hours under a constant pressure of CO₂. Formation of an oily phase occurred. The oil was extracted with ethyl acetate (2 x 15 mL), the organic phases being collected and dried over MgSO₄. The solvent was eliminated under reduced


pressure, affording a colourless/pale-yellow oil which was charged on a silica column. A mixture of ethyl acetate and petroleum ether (40–60°C) (from 1:10 to 1:6 v/v), added of triethylamine (5% v/v), was used as eluent to collect the fraction corresponding to the desired product.

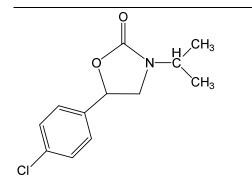
3-(2-aminoethyl)-5-phenyloxazolidin-2-one, 8h.


Colourless solid, from **1** (3.4 mmol) and NH₂CH₂CH₂NH₂. *Procedure B*: yield 71%, reaction time = 48 hours. Anal. calcd. for C₉H₁₀N₂O₂: C, 64.06; H, 6.84; N, 13.58. Found C, 64.20; H, 6.80; N, 13.53. IR (solid state): $\tilde{v} = 3365w$ (N–H), 2939vw, 1724vs (C=O), 1478w-m, 1435m, 1333w, 1244w-m, 1195w, 1195w, 1158w, 1087w, 1017m, 946w-m, 890w, 757s, 698s cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.40-7.31$ (m, 5H, Ph); 5.49 (t, ³J_{HH} = 8.2 Hz, 1H, CH); 3.97, 3.47 (t, ³J_{HH} = 8.3 Hz, 2H, CH₂); 3.42-3.36, 3.31-3.24 (m, 2H, NCH₂CH₂); 2.87 (t, ³J_{HH} = 6.2 Hz, 2H, NCH₂CH₂); 1.37 (s, 2H, NH₂) ppm. ¹³C NMR (CDCl₃): $\delta = 158.5$ (C=O); 138.7, 128.9, 125.6 (Ph); 74.6 (CH); 52.7 (CH₂); 47.3 (NCH₂CH₂); 39.9 (NCH₂CH₂) ppm.

3-(2-hydroxyethyl)-5-phenyloxazolidin-2-one, 8i.


Colourless solid, from **1** (3.4 mmol) and NH₂CH₂CH₂OH. *Procedure A*: yield 95%, reaction time = 48 hours; *procedure B*: yield 62%, reaction time = 48 hours. Anal. calcd. for C₉H₁₀N₂O₂: C, 63.76; H, 6.32; N, 6.76. Found C, 63.50; H, 6.38; N, 6.66. IR (solid state): \tilde{v} = 3419br (O–H), 2930vw, 2881vw, 1722vs (C=O), 1489w, 1440w-m, 1366w, 1332w, 1251w-m, 1195vw, 1118vw, 1028m-s, 960w, 864vw, 758s, 698s cm⁻¹. ¹H NMR (CDCl₃): δ = 7.39-7.32 (m, 5H, Ph); 5.50 (t, ³J_{HH} = 8.2 Hz, 1H, CH); 4.05, 3.56 (t, ³J_{HH} = 8.3 Hz, 2H, CH₂); 3.79 (t, ³J_{HH} = 5.1 Hz, 2H, NCH₂CH₂); 3.53-3.46, 3.39-3.33 (m, 2H, NCH₂CH₂); 3.11 (br, 1H, OH) ppm. ¹³C NMR (CDCl₃): δ = 158.8 (C=O); 138.6, 129.0, 125.8 (Ph); 75.1 (CH); 60.4 (NCH₂CH₂); 53.2 (CH₂); 46.8 (NCH₂CH₂) ppm.

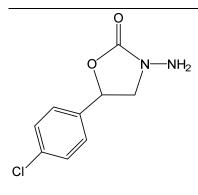
3-isopropyl-5-(p-tolyl)oxazolidin-2-one, 9d.


Pale-pink solid, from **2** (2.5 mmol) and NH₂ⁱPr. *Procedure A*: yield 50%, reaction time = 48 hours; *procedure B*: yield 68%, reaction time = 72 hours. Anal. calcd. for C₁₃H₁₇NO₂: C, 71.21; H, 7.81; N, 6.39. Found C, 71.25; H, 7.86; N, 6.35. IR (solid state): $\tilde{v} = 2973$ w-m, 2933w, 2878w, 1813vw, 1737vs (C=O), 1616vw, 1517w-m, 1488m, 1424m, 1368w-m, 1239m-s, 1184w, 1129w-m, 1071m, 1018s, 950w, 882vw, 817s, 763m-s, 721vw cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.22$ -7.15 (m, 4H, C₆H₄); 5.39 (t, ³J_{HH} = 7.9 Hz, 1H, CH); 4.12 (m, 1H, CHMe₂); 3.81 (t, ³J_{HH} = 8.8 Hz, 1H, CH₂), 3.32 (dd, ³J_{HH} = 8.0 Hz, 1H, CH₂); 2.32 (s, 3H, C₆H₄CH₃); 1.18, 1.12 (d, ³J_{HH} = 6.7 Hz, 6H, CHMe₂) ppm. ¹³C NMR (CDCl₃): $\delta = 157.3$ (C=O); 138.6, 136.0, 129.5, 125.6 (Ph); 74.6 (CH); 47.4 (CH₂); 44.9 (*CH*Me₂); 21.2 (C₆H₄CH₃); 20.0, 19.6 (CHMe₂) ppm.

3-benzyl-5-(p-tolyl)oxazolidin-2-one, 9f.

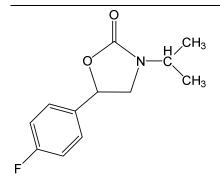

Pale-yellow solid, from **2** (5.9 mmol) and NH₂Bn. *Procedure A*: yield 68%, reaction time = 48 hours; *procedure B*: yield 70%, reaction time = 48 hours. Anal. calcd. for C₁₇H₁₇NO₂: C, 76.38; H, 6.41; N, 5.24. Found C, 76.25; H, 6.56; N, 5.20. IR (solid state): \tilde{v} = 3030vw, 2922vw, 1740vs (C=O), 1615vw, 1518w, 1491w-m, 1425m, 1363m, 1332m, 1248m-s, 1204m, 1182m, 1100m, 1020m-s, 947m, 813s, 755m-s, 699s, 668m-s cm⁻¹. ¹H NMR (CDCl₃): δ = 7.40–7.31 (m, 5H, Ph); 7.23–7.16 (m, 4H, C₆H₄); 5.44 (t, ³J_{HH} = 8.3 Hz, 1H, CH); 4.55, 4.44 (d, ²J_{HH} = 14.8 Hz, 2H, CH₂Ph); 3.76, 3.32 (t, ³J_{HH} = 8.3 Hz, 2H, CH₂); 2.32 (s, 3H, C₆H₄CH₃) ppm. ¹³C NMR (CDCl₃): δ = 158.0 (C=O); 138.6, 135.7, 135.5, 129.4, 128.8, 128.1, 127.9, 125.6 (Ph); 74.5 (CH); 51.5 (CH₂); 48.3 (CH₂Ph); 21.1 (C₆H₄CH₃) ppm.

5-(4-chlorophenyl)-3-isopropyloxazolidin-2-one, 10d.

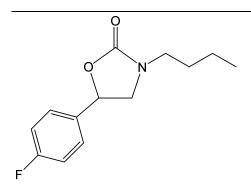


Pale-yellow solid, from **3** (5.3 mmol) and NH₂ⁱPr. *Procedure A*: yield 79%, reaction time = 48 hours; *procedure B*: yield 60%, reaction time = 72 hours. Anal. calcd. for C₁₂H₁₄ClNO₂: C, 60.13; H, 5.89; N, 5.84. Found C, 59.80; H, 5.78; N, 5.73. IR (solid state): $\tilde{v} = 2973$ w-m, 2935vw, 2879vw, 1738vs (C=O), 1599vw, 1493m, 1460w, 1426m, 1368w-m, 1350w-m, 1238m-s, 1129w, 1088m, 1032m-s, 1012s, 952w-m, 882w, 828m, 761m-s cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.33$, 7.26 (d, ³J_{HH} = 8.4 Hz, 4H, C₆H4); 5.42 (t, ³J_{HH} = 7.8 Hz, 1H, CH); 4.10 (m, 1H, CHMe₂), 3.85, 3.29 (t, ³J_{HH} = 7.8 Hz, 2H, CH₂); 1.18, 1.12 (d, ³J_{HH} = 6.8 Hz, 6H, CH*Me*₂) ppm. ¹³C NMR (CDCl₃): $\delta = 156.9$ (C=O); 137.6, 134.6, 129.1, 126.9 (C₆H4); 73.8 (CH); 47.3 (CH₂); 45.0 (*CH*Me₂); 20.0, 19.6 (CH*Me*₂) ppm.

3-benzyl-5-(4-chlorophenyl)oxazolidin-2-one, 10f.



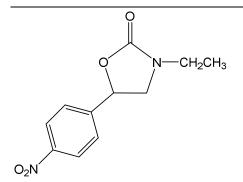
Pale-yellow solid, from **3** (5.6 mmol) and NH₂Bn. *Procedure A*: yield 87%, reaction time = 48 hours; *procedure B*: yield 72%, reaction time = 48 hours. Anal. calcd. for C₁₆H₁₄ClNO₂: C, 66.79; H, 4.90; N, 4.87. Found C, 66.82; H, 4.88; N, 4.85. IR (solid state): \tilde{v} = 3028w, 2925w, 1742vs (C=O), 1618vw, 1522w, 1491w-m, 1430m, 1360m-s, 1335m, 1246m-s, 1204m, 1182m, 1101m-s, 1019m, 947m, 815s, 754m-s, 696s, 672s cm⁻¹. ¹H NMR (CDCl₃): δ = 7.37-7.22 (m, 9H, C₆H₄ + Ph); 5.43 (t, ³J_{HH} = 8.4 Hz, 1H, CH); 4.52, 4.41 (d, ²J_{HH} = 14.7 Hz, 2H, CH₂); 3.77, 3.26 (t, ³J_{HH} = 8.5 Hz, 2H, CH₂Ph) ppm. ¹³C NMR (CDCl₃): δ = 157.5 (C=O); 137.0, 135.4, 134.3, 128.8, 128.7, 127.9, 126.8 (C₆H₄ + Ph); 73.6 (CH); 51.1 (CH₂); 48.1 (*CH₂*Ph) ppm. 3-amino-5-(4-chlorophenyl)oxazolidin-2-one, 10g.


Colourless solid, from **3** (3.8 mmol) and NH₂NH₂ (60% aqueous solution). *Procedure B*: yield 88%, reaction time = 48 hours. Anal. calcd. for C₉H₉ClN₂O₂: C, 50.84; H, 4.27; N, 13.17. Found C, 50.90; H, 4.26; N, 13.08. IR (solid state): $\tilde{v} = 3242w$ (N–H), 3189w (N–H), 2974vw, 1739vs (C=O), 1583m, 1487m, 1441w-m, 1416w-m, 1361w-m, 1287w, 1287vw, 1203vw, 1178vw, 1109m-s, 1089m, 977s, 844m-s, 804m, 765m-s cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.41-7.29$ (m, 4H, C₆H₄); 5.42 (t, ³J_{HH} = 8.2 Hz, 1H, CH); 4.08-4.01 (m, 3H, CH₂ + NH₂); 3.54 (t, ³J_{HH} = 8.3 Hz,1H, CH₂) ppm. ¹³C NMR (CDCl₃): $\delta = 159.1$ (C=O); 136.3, 135.2, 129.3, 127.3 (C₆H₄); 73.4 (CH); 55.9 (CH₂) ppm.

5-(4-fluorophenyl)-3-isopropyloxazolidin-2-one, 11d.

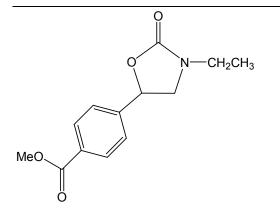
Colourless solid, from **4** (2.9 mmol) and NH₂ⁱPr. *Procedure A*: yield 72%, reaction time = 48 hours; *procedure B*: yield 61%, reaction time = 72 hours. Anal. calcd. for C₁₂H₁₄FNO₂: C, 64.56; H, 6.32; N, 6.27. Found C, 64.54; H, 6.27; N, 6.31. IR (solid state): $\tilde{v} = 2975w$, 1737vs (C=O), 1607w-m, 1512m-s, 1417m, 1353w-m, 1224s, 1159m, 1014m-s, 952w, 837m-s, 760m cm⁻¹. ¹H NMR (CDCl₃) $\delta = 7.33$ - 7.29, 7.07 – 7.02 (m, 4H, C₆H₄); 5.43 (t, ${}^{3}J_{HH} = 8.1$ Hz, 1H, CH); 4.13 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 1H, NCH); 3.84, 3.32 (t, 2H, CH₂, J = 8.6 Hz); 1.16 (dd, ${}^{1}J_{HH} = 19.9$ Hz, ${}^{3}J_{HH} = 6.8$ Hz, 6H, CH*Me*₂) ppm. ${}^{13}C$ NMR (CDCl₃): $\delta = 162.8$ (d, ${}^{1}J_{CF} = 248.2$ Hz, *C*–F); 156.9 (C=O); 134.8 (d), 127.5 (d), 115.8 (d) (C₆H₄); 73.9 (CH); 47.4 (CH₂); 44.9 (NCH); 19.9, 19.5 (CH*Me*₂) ppm. ${}^{19}F{}^{1}H$ NMR (CDCl₃): $\delta = -112.9$ (s) ppm.

3-butyl-5-(4-fluorophenyl)oxazolidin-2-one, 11h.


Pale yellow solid, from **4** (4.2 mmol) and NH₂ⁿBu. *Procedure A*: yield 82%, reaction time = 48 hours; *procedure B*: yield 80%, reaction time = 72 hours. Anal. calcd. for C₁₃H₁₆FNO₂: C, 65.81; H, 6.80; N, 5.90. Found C, 65.85; H, 6.77; N, 5.95. IR (solid state): $\tilde{v} = 2960w$, 2874vw, 1739vs (C=O), 1607w-m, 1512m-s, 1419m, 1334vw, 1226s, 1159w, 1024m, 955vw, 838m-s, 754m cm⁻¹. ¹H NMR (CDCl₃) $\delta = 7.34-7.30$, 7.09 – 7.04 (m, 4H, C₆H₄); 5.44 (t, ³J_{HH} = 8.2 Hz, 1H, CH); 3.87 (t, 2H, CH₂, J = 8.6 Hz); 3.40-3.26 (m, 3H, CH₂ + NCH₂^{Bu}); 1.53 (m, 2H, CH₂^{Bu}); 1.38 (m, 2H, CH₂^{Bu}); 0.92 (t, ³J_{HH} = 7.4 Hz, 3H, CH₃^{Bu}) ppm. ¹³C NMR (CDCl₃): $\delta = 162.9$ (d, ¹J_{CF} = 248.1 Hz, *C*–F); 157.8 (C=O); 134.8, 127.5 (d), 116.6 (d), (C₆H₄); 73.8 (CH); 52.2 (CH₂); 44.0 (NCH₂^{Bu}); 29.5, 19.9 (CH₂^{Bu}); 13.7 (CH₃^{Bu}) ppm. ¹⁹F{¹H} NMR (CDCl₃): $\delta = -112.8$ (s) ppm.

3-methyl-5-(4-nitrophenyl)oxazolidin-2-one, 13b.

Pale yellow solid, from **6** (2.3 mmol) and NH₂Me (40% aqueous solution). *Procedure A*: yield 98%, reaction time = 24 hours. Anal. calcd. for C₁₀H₁₀N₂O₄: C, 54.05; H, 4.54; N, 12.61. Found C, 54.35; H, 4.77; N, 12.45. IR (solid state): $\tilde{v} = 2944w$, 1746vs (C=O), 1597w-m, 1515s, 1431m, 1341s, 1280m, 1110w-m, 1025s, 851m, 735m-s cm⁻¹. ¹H NMR (CDCl₃) $\delta = 8.23$, 7.53 (m, 4H, C₆H₄); 5.58 (t, ³J_{HH} = 8.2 Hz, 1H, CH); 4.01, 3.41 (t, 2H, CH₂, J = 8.7 Hz); 2.91 (s, 3H, NCH₃) ppm. ¹³C NMR (CDCl₃): $\delta = 157.6$ (C=O); 148.1, 146.0, 126.4, 124.2 (C₆H₄); 72.9 (CH); 54.0 (CH₂); 31.2 (NCH₃) ppm.


3-ehtyl-5-(4-nitrophenyl)oxazolidin-2-one, 13c.

Pale brown solid, from **6** (2.3 mmol) and NH₂Et (2M tetrahydrofuran solution). *Procedure A*: yield 92%, reaction time = 48 hours. Anal. calcd. for C₁₁H₁₂N₂O₄: C, 55.93; H, 5.12; N, 11.86. Found C, 55.85; H, 5.27; N, 11.95. IR (solid state): $\tilde{v} = 2937$ w, 1742vs (C=O), 1600w-m, 1514vs, 1435m, 1344vs, 1252m, 1110w-m, 1045m-s, 855s, 754m-s cm⁻¹. ¹H NMR (CDCl₃) $\delta = 8.23$, 7.53 (m, 4H, C₆H₄); 5.61 (t, ³J_{HH} = 8.2 Hz, 1H, CH); 4.04 (t, ³J_{HH} = 8.3 Hz, 1H, CH₂); 3.42-3.27 (m, 3H, CH₂ +

NCH₂); 1.16 (t, ${}^{3}J_{HH} = 7.3$ Hz, 3H, CH₂CH₃) ppm. ${}^{13}C$ NMR (CDCl₃): $\delta = 157.8$ (C=O); 148.0, 146.1, 126.3, 124.2 (C₆H₄); 73.0 (CH); 51.2 (CH₂); 39.0 (NCH₂); 12.5 (CH₂CH₃) ppm.

Metyl 4-(3-ethyl-2-oxooxazolidin-5-yl)benzoato, 14c.

Pale orange solid, from 7 (2.9 mmol) and NH₂Et (2M tetrahydrofuran solution). *Procedure A*: yield 67%, reaction time = 48 hours. Anal. calcd. for C₁₃H₁₅NO₄: C, 62.64; H, 6.07; N, 5.62. Found C, 62.45; H, 6.05; N, 5.68. IR (solid state): \tilde{v} = 2975w, 2937vw, 2880vw, 1742s (C=O), 1736vs (C=O), 1612w-m, 1516m-s, 1424w-m, 1297m, 1248s, 1025m, 968w, 838m, 804w, 758w cm^{-1.1}H NMR (CDCl₃) δ = 7.27-7.23, 6.90-6.86 (m, 4H, C₆H₄); 5.39 (t, ³J_{HH} = 8.1 Hz, 1H, CH); 3.84 (t, ³J_{HH} = 8.3 Hz, 1H, CH₂); 3.77 (s, 3H, OMe); 3.40-3.27 (m, 3H, CH₂ + NCH₂); 1.15 (t, ³J_{HH} = 7.3 Hz, 3H, CH₂CH₃) ppm. ¹³C NMR (CDCl₃): δ = 159.9 (MeOC); 157.7 (NC=O); 130.6, 127.2, 114.1 (C₆H₄); 74.3 (CH); 55.2 (OMe); 51.4 (CH₂); 38.8 (NCH₂); 12.5 (CH₂CH₃) ppm.

Corresponding Authors

* fabio.marchetti1974@unipi.it (webpage: http://people.unipi.it/fabio_marchetti1974/)

- * gianluca.ciancaleoni@unipi.it
- * guido.pampaloni@unipi.it;

[§] These authors equally contributed to the work.

Acknowledgements

We gratefully thank the University of Pisa for financial support (Fondi di Ateneo 2018).

Supporting Information Available

NMR characterization of 1-7; X-ray crystallography; NMR studies; DFT calculations; E-factor calculations; NMR and IR spectra of products. Cartesian coordinates of the DFT structures are collected in a separated .xyz file. CCDC reference numbers 1967793 (10a) and 1967794 (10e) contain the supplementary crystallographic data for the X-ray studies reported in this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44-1223/336-033; e-mail: deposit@ccdc.cam.ac.uk).

References

- Selected recent reviews: a) J. Artz, T. E. Müller, K. Thenert, *Chem. Rev.* 2018, *118*, 434-504. b) R. Dalpozzo, N. Della Ca', B. Gabriele, R. Mancuso, *Catalysts* 2019, *9*, 511. c) Q.-W. Song, Z. H. Zhou, L.-N. He, *Green Chem.* 2017, *19*, 3707-3728. d) Q. Liu, L. Wu, R. Jackstell, M. Beller, *Nat. Commun.* 2015, *6*, 5933. e) F. D. Bobbink, A. P. van Muyden, P. J. Dyson, *Chem. Commun.* 2019, *55*, 1360-1373. f) M. Aresta, *Coord. Chem. Rev.* 2017, *334*, 150–183. g) J. E. Gómez, A. W. Kleij, *Adv. Organometal. Chem.* 2019, *71*, 175-226. h) N. A. Tappe, R. M. Reich, V. D' Elia, F. E. Kühn, *Dalton Trans.* 2018, *47*, 13281–13313.
- [2] a) T. Niemi, T. Repo, *Eur. J. Org. Chem.* 2019, 1180–1188. b) M. R. Barbachyn in *Topics in Medicinal Chemistry, vol 26: Antibacterials* (Eds.: J. Fisher, S. Mobashery, M. Miller), Springer, Cham, 2017, pp. 97-121. c) W. J. Watkins, J. J. Plattner, *Med. Chem. Rev.* 2015, *50*, 241-281. d) C. A. Zaharia, S. Cellamare, C. D. Altomare, Ed. C. Lamberth, J. Dinges, Oxazolidinone Amide Antibiotics, From Bioactive Carboxylic Compound Classes 2016, 149-166. e) P. S. Jadhavar, M. D. Vaja, T. M. Dhameliya, A. K. Chakraborti,

Curr. Med. Chem. **2015**, *22*, 4379-4397. f) N. Pandit, R. K. Singla, B. Shrivastava, *Int. J. Med. Chem.* **2012**, doi:10.1155/2012/159285.

- [3] a) V. Zadsirjan, M. M. Heravi, *Curr. Org. Synth.* 2018, *15*, 3-20. b) S. G. Davies, A. M. Fletcher, P. M. Roberts, J. E Thomson, *Org. Biomol. Chem.* 2019, *17*, 1322-1335. c) M. M. Heravi, V. Zadsirjan, B. Farajpour, *RSC Adv.* 2016, *6*, 30498-30551. d) M. M. Heravi, V. Zadsirjan, *Tetrahedron: Asymmetry* 2013, *24*, 1149-1188.
- [4] a) S. Wang, C. Xi., *Chem. Soc. Rev.* 2019, 48, 382-404. b) S. Arshadi, A. Banaei, S. Ebrahimiasl, A. Monfared, E. Vessally, *RSC Adv.* 2019, 9, 19465–19482. c) B. Yu, L.-Nian He, *ChemSusChem* 2015, 8, 52-62.
- [5] Y. Kayaki, M. Yamamoto, T. Suzuki, T. Ikariya, Green Chem. 2006, 8, 1019–1021.
- [6] a) P. Garcia-Dominguez, L. Fehr, G. Rusconi, C. Nevado, *Chem. Sci.* 2016, 7, 3914–3918. b) X.-T. Gao, C.-C. Gan, S.-Y. Liu, F. Zhou, H.-H. Wu, J. Zhou, *ACS Catal.* 2017, 7, 8588–8593. c) Z. Zhang, J.-Heng Ye, D.-Shan Wu, Y.-Qin Zhou, D.-Gang Yu, *Chem. Asian J.* 2018, *13*, 2292–2306. d) S. Pulla, C. M. Felton, P. Ramidi, Y. Gartia, N. Ali, U. B. Nasini, A. Ghosh, *J. CO₂ Utilization* 2013, *2*, 49–57. e) J.-F. Qin, B. Wang, G.-Q. Lin, *Green Chem.* 2019, *21*, 4656-4661.
- [7] R. Yousefi, T. J. Struble, J. L. Payne, M. Vishe, N. D. Schley, J. N. Johnston, Catalytic, J. Am. Chem. Soc. 2019, 141, 618–625.
- [8] T. Niemi, J. E. Perea-Buceta, I. Fernandez, S. Alakurtti, E. Rantala, T. Repo, Chem. Eur. J. 2014, 20, 8867– 8871.
- [9] a) M. Tamura, M. Honda, Y. Nakagawa, K. Tomishige, J. Chem. Technol. Biotechnol. 2014, 89, 19–33. b)
 C. J. Dinsmore, S. P. Mercer, Org. Letters 2004, 6, 2885-2888.
- [10] a) A. Hosseinian, S. Ahmadi, R. Mohammadi, A. Monfared, Z. Rahmani, J. CO₂ Utilization 2018, 27, 381–389. b) U. R. Seo, Y. K. Chung, Green Chem. 2017, 19, 803–808. c) M. Lv, P. Wang, D. Yuan, Y. Yao, ChemCatChem 2017, 9, 4451-4455.
- [11] H. Li, H. Feng, F. Wang, L. Huang, J. Org. Chem. 2019, 84, 10380-10387
- [12] J. K. Mannisto, A. Sahari, K. Lagerblom, T. Niemi, M. Nieger, G. Sztanj, T. Repo, Chem. Eur. J. 2019, 25, 10284–10289.
- [13] T. Niemi, J. E. Perea-Buceta, I. Fernandez, O.-M. Hiltunen, V. Salo, S. Rautiainen, M. T. Räisänen, T. Repo, *Chem. Eur. J.* 2016, 22, 10355–10359.
- [14] K. J. Lamb, I. D. V. Ingram, M. North, M. Sengoden, Curr. Green. Chem. 2019, 6, 32-43.
- [15] a) C. Phung, D. J. Tantillo, J. E. Hein, A. R. Pinhas, J. Phys. Org. Chem. 2018, 31, e3735. b) A. Singh, N. Goel, Structural Chemistry 2014, 25, 1245-1255.
- [16] Selected references: a) Y. Xie, C. Lu, B. Zhao, Q. Wang, Y. Yao, J. Org. Chem. 2019, 84, 1951–1958. b)
 M. Sengoden, M. North, A. C. Whitwood, ChemSusChem 2019, 12, 3296-3303. c) X.-Min Kang, L.-Hong
 Yao, Z.-Hao Jiao, B. Zhao, Chem. Asian J. 2019, 14, 3668-3674. d) X.-F. Liu, M.-Y. Wang, L.-N. He,

Curr. Org. Chem. **2017**, *21*, 698-707. e) W. Chen, L.-X. Zhong, X.-W. Peng, R.-C. Sun, F.-C. Lu, *ACS Sustainable Chem. Eng.* **2015**, *3*, 147–152.

- [17] a) A.-H. Liu, Y.-L. Dang, H. Zhou, J.-J. Zhang, X.-B. Lu, *ChemCatChem* 2018, 10, 2686-2692. b) Z.-Z. Yang, L.-N. He, S.-Y. Peng, A.-H. Liu, *Green Chem.* 2010, 12, 1850–1854. c) V. B. Saptal, B. M. Bhanage, *ChemSusChem* 2016, 9, 1980-1985. d) K. Soga, S. Hosoda, H. Nakamura, S. A. Ikeda, J. Chem. Soc., *Chem. Commun.* 1976, 617-617. e) A. Ueno, Y. Kayaki, T. Ikariya, *Green Chem.* 2013, 15, 425–430. f) Y. Wu, G. Liu, *Tetrahedron Letters* 2011, 52, 6450-6452.
- [18] H. Li, H. Guo, Z. Fang, T. M. Aida, R. L. Smith Jr., Green Chem. 2020, 22, 582-611.
- [19] a) C. Phung, R. M. Ulrich, M. Ibrahim, N. T. G. Tighe, D. L. Lieberman, A. R. Pinhas, *Green Chem.* 2011, 13, 3224–3229. b) X.-Y. Dou, L.-N. He, Z.-Z. Yang, J.-L. Wang, *Synlett* 2010, 14, 2159-2163.
- [20] a) M. Franz, T. Stalling, H. Steinert, J. Martens, Org. Biomol. Chem. 2018, 16, 6914–6926. b) A. Sudo, Y. Morioka, E. Koizumi, F. Sanda, T. Endo, Tetrahedron Letters 2003, 44, 7889–7891.
- [21] Additional references: a) Z.-Z. Yang, Y.-N. Li, Y.-Y. Wei, L.-N. He, *Green Chem.* 2011, *13*, 2351–2353. b)
 R. A.Watile, D. B.Bagal, Y. P.Patil, B. M.Bhanage, *Tetrahedron Letters* 2011, *52*, 6383-6387. c) R. A. Watile, D. B. Bagal, K. M. Deshmukh, K. P. Dhake, B. M. Bhanage, *J. Mol. Catal. A* 2011, *351*, 196-203. d) D. B. Nale, S. Rana, K. Parida, B. M. Bhanage, *Appl. Catal. A* 2014, *469*, 340-349.
- [22] a) S. Arayachukiat, P. Yingcharoen, S. V. C. Vummaleti, L. Cavallo, A. Poater, V. D'Elia, *Mol. Catal.* 2017, 443, 280–285. b) X.-B. Lu, *Top Organomet. Chem.* 2016, 53, 171–198.
- [23] a) M. Hulla, P. J. Dyson, Angew. Chem. Int. Ed. 2020, 59, 1002-1017. b) Y. Yoshida, S. Inoue, J. Chem. Soc. Perkin Trans. I 1979, 3146-3150.
- [24] a) J. Septavaux, G. Germain, J. Leclaire, Acc. Chem. Res. 2017, 50, 1692–1701. b) Y.-N. Li, L.-N. He, Z.-F. Diao, Z.-F. Yang, Carbon Capture with Simultaneous Activation and Its Subsequent Transformation. Advances in Inorganic Chemistry 2014, Vol. 66, Elsevier Ed. c) D. Belli Dell'Amico, F. Calderazzo, L. Labella, F. Marchetti, G. Pampaloni, Chem. Rev. 2003, 103, 3857-3897. d) G. Bresciani, L. Biancalana, G. Pampaloni, F. Marchetti, Molecules 2020, 25, 3603; doi:10.3390/molecules25163603.
- [25] S. Sternativo, F. Marini, F. Del Verme, A. Calandriello, L. Testaferri, M. Tiecco, *Tetrahedron* 2010, 66, 6851-6857.
- [26] a) A. Šakalyte, J. A. Reina, M. Giamberini, A. Lederer, *Polymer Engineering and Science* 2014, 54, 579-591. b) B. L. Rjvas, K. E. Geckeler, E. Bayer, *Eur. Polym. J.* 1991, 27, 1165-1169.
- [27] Attempts to synthesize the corresponding (2-bromo-1-arylethyl)dimethylsulfonium bromide salt from allylbromide, allylbenzene, 2,6-dichlorostyrene, 2,4,6-trimethylstyrene and pentafluorostyrene were not successful.
- [28] Y. Du, Y. Wu, A.-H. Liu, L.-N. He, J. Org. Chem. 2008, 73, 4709–4712.
- [29] J. V. Matlock, S. P. Fritz, S. A. Harrison, D. M. Coe, E. M. McGarrigle, V. K. Aggarwal, J. Org. Chem. 2014, 79, 10226-10239.

- [30] a) Y. L. Chow, B. H. Bakker, Synthesis 1982, 648-650. b) Y. L. Chow, B. H. Bakker, K. Iwai, J. Chem. Soc. Chem. Commun. 1982, 521-522.
- [31] NMR analysis of the aqueous phases at the end of reaction led to recognition of VS1-4 only.
- [32] The fast reaction of **1** with NH₂Me/CO₂ in DMSO-d₆ was monitored by ¹H NMR spectroscopy, and the observation of two doublets at 6.60 and 6.42 ppm accounted for the intermediate formation of **VS1**.
- [33] Calculated $\Delta S^{\dagger} = -48$ cal mol⁻¹ K⁻¹; experimental $\Delta S^{\dagger} = -38 \pm 6$ cal mol⁻¹ K⁻¹.
- [34] D.-L. Kong, L.-N. He, J.-Q. Wang, Catal. Commun. 2010, 11, 992–995.
- [35] SciFinder, water solubility calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2019 ACD/Labs).
- [36] a) R. F. Ulrich Steuerle, *Aziridines* in: Ullmann's Encyclopedia of Industrial Chemistry; Wiley: 2006. b) C.
 Cussac, F. Laval, Nucleic Acids Res. 1996, 24, 1742–1746.
- [37] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, 29, 2176–2179.
- [38] W. Willker, D. Leibfritz, R. Kerssebaum, W. Bermel, Magn. Reson. Chem. 1993, 31, 287-292.