157 research outputs found

    Neonatal head and torso vibration exposure during inter-hospital transfer

    Get PDF
    Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is ~9Hz. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC15) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes

    Chondroitin sulfates and their binding molecules in the central nervous system

    Get PDF
    Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases

    Analysis of In-Vivo LacR-Mediated Gene Repression Based on the Mechanics of DNA Looping

    Get PDF
    Interactions of E. coli lac repressor (LacR) with a pair of operator sites on the same DNA molecule can lead to the formation of looped nucleoprotein complexes both in vitro and in vivo. As a major paradigm for loop-mediated gene regulation, parameters such as operator affinity and spacing, repressor concentration, and DNA bending induced by specific or non-specific DNA-binding proteins (e.g., HU), have been examined extensively. However, a complete and rigorous model that integrates all of these aspects in a systematic and quantitative treatment of experimental data has not been available. Applying our recent statistical-mechanical theory for DNA looping, we calculated repression as a function of operator spacing (58–156 bp) from first principles and obtained excellent agreement with independent sets of in-vivo data. The results suggest that a linear extended, as opposed to a closed v-shaped, LacR conformation is the dominant form of the tetramer in vivo. Moreover, loop-mediated repression in wild-type E. coli strains is facilitated by decreased DNA rigidity and high levels of flexibility in the LacR tetramer. In contrast, repression data for strains lacking HU gave a near-normal value of the DNA persistence length. These findings underscore the importance of both protein conformation and elasticity in the formation of small DNA loops widely observed in vivo, and demonstrate the utility of quantitatively analyzing gene regulation based on the mechanics of nucleoprotein complexes

    A review of the current treatment methods for posthaemorrhagic hydrocephalus of infants

    Get PDF
    Posthaemorrhagic hydrocephalus (PHH) is a major problem for premature infants, generally requiring lifelong care. It results from small blood clots inducing scarring within CSF channels impeding CSF circulation. Transforming growth factor – beta is released into CSF and cytokines stimulate deposition of extracellular matrix proteins which potentially obstruct CSF pathways. Prolonged raised pressures and free radical damage incur poor neurodevelopmental outcomes. The most common treatment involves permanent ventricular shunting with all its risks and consequences

    Genotyping of Human Lice Suggests Multiple Emergences of Body Lice from Local Head Louse Populations

    Get PDF
    While being phenotypically and physiologically different, human head and body lice are indistinguishable based on mitochondrial and nuclear genes. As protein-coding genes are too conserved to provide significant genetic diversity, we performed strain-typing of a large collection of human head and body lice using variable intergenic spacer sequences. Ninety-seven human lice were classified into ninety-six genotypes based on four intergenic spacer sequences. Genotypic and phylogenetic analyses using these sequences suggested that human head and body lice are still indistinguishable. We hypothesized that the phenotypic and physiological differences between human head and body lice are controlled by very limited mutations. Under conditions of poor hygiene, head lice can propagate very quickly. Some of them will colonize clothing, producing a body louse variant (genetic or phenetic), which can lead to an epidemic. Lice collected in Rwanda and Burundi, where outbreaks of louse-borne diseases have been recently reported, are grouped tightly into a cluster and those collected from homeless people in France were also grouped into a cluster with lice collected in French non-homeless people. Our strain-typing approach based on highly variable intergenic spacers may be helpful to elucidate louse evolution and to survey louse-borne diseases

    The Repeatability of Adaptive Radiation During Long-Term Experimental Evolution of Escherichia coli in a Multiple Nutrient Environment

    Get PDF
    Adaptive radiations occur when a species diversifies into different ecological specialists due to competition for resources and trade-offs associated with the specialization. The evolutionary outcome of an instance of adaptive radiation cannot generally be predicted because chance (stochastic events) and necessity (deterministic events) contribute to the evolution of diversity. With increasing contributions of chance, the degree of parallelism among different instances of adaptive radiations and the predictability of an outcome will decrease. To assess the relative contributions of chance and necessity during adaptive radiation, we performed a selection experiment by evolving twelve independent microcosms of Escherichia coli for 1000 generations in an environment that contained two distinct resources. Specialization to either of these resources involves strong trade-offs in the ability to use the other resource. After selection, we measured three phenotypic traits: 1) fitness, 2) mean colony size, and 3) colony size diversity. We used fitness relative to the ancestor as a measure of adaptation to the selective environment; changes in colony size as a measure of the evolution of new resource specialists because colony size has been shown to correlate with resource specialization; and colony size diversity as a measure of the evolved ecological diversity. Resource competition led to the rapid evolution of phenotypic diversity within microcosms. Measurements of fitness, colony size, and colony size diversity within and among microcosms showed that the repeatability of adaptive radiation was high, despite the evolution of genetic variation within microcosms. Consistent with the observation of parallel evolution, we show that the relative contributions of chance are far smaller and less important than effects due to adaptation for the traits investigated. The two-resource environment imposed similar selection pressures in independent populations and promoted parallel phenotypic adaptive radiations in all independently evolved microcosms

    Statistical practices of educational researchers: An analysis of their ANOVA, MANOVA, and ANCOVA analyses

    Get PDF
    Articles published in several prominent educational journals were examined to investigate the use of data-analysis tools by researchers in four research paradigms: between-subjects univariate designs, between-subjects multivariate designs, repeated measures designs, and covariance designs. In addition to examining specific details pertaining to the research design (e.g., sample size, group size equality/inequality) and methods employed for data analysis, we also catalogued whether: (a) validity assumptions were examined, (b) effect size indices were reported, (c) sample sizes were selected based on power considerations, and (d) appropriate textbooks and/or articles were cited to communicate the nature of the analyses that were performed. Our analyses imply that researchers rarely verify that validity assumptions are satisfied and accordingly typically use analyses that are nonrobust to assumption violations. In addition, researchers rarely report effect size statistics, nor do they routinely perform power analyses to determine sample size requirements. We offer many recommendations to rectify these shortcomings.Social Sciences and Humanities Research Counci

    Effects of Trophic Skewing of Species Richness on Ecosystem Functioning in a Diverse Marine Community

    Get PDF
    Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions
    corecore