1,104 research outputs found

    Audit of head injury management in Accident and Emergency at two hospitals: implications for NICE CT guidelines

    Get PDF
    BACKGROUND: The National Institute for Clinical Excellence (NICE) has produced guidelines on the early management of head injury. This study audits the process of the management of patients with head injury presenting at Accident and Emergency (A&E) departments and examines the impact upon resources of introducing NICE guidelines for eligibility of a CT scan. METHODS: A retrospective audit of consecutive patients of any age, presenting at A&E with a complaint of head injury during one month in two northern District General Hospitals forming part of a single NHS Trust. RESULTS: 419 patients presented with a median age of 15.5 years, and 61% were male. 58% had a Glasgow Coma Score (GCS) recorded and 33 (8%) were admitted. Only four of the ten indicators for a CT scan were routinely assessed, but data were complete for only one (age), and largely absent for another (vomiting). Using just three (incomplete) indicators showed a likely 4 fold increase in the need for a CT scan. CONCLUSIONS: The majority of patients who present with a head injury to Accident and Emergency departments are discharged home. Current assessment processes and associated data collection routines do not provide the information necessary to implement NICE guidelines for CT brain scans. The development of such clinical audit systems in a busy A&E department is likely to require considerable investment in technology and/or staff. The resource implications for radiology are likely to be substantial

    Clustering exact matches of pairwise sequence alignments by weighted linear regression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>At intermediate stages of genome assembly projects, when a number of contigs have been generated and their validity needs to be verified, it is desirable to align these contigs to a reference genome when it is available. The interest is not to analyze a detailed alignment between a contig and the reference genome at the base level, but rather to have a rough estimate of where the contig aligns to the reference genome, specifically, by identifying the starting and ending positions of such a region. This information is very useful in ordering the contigs, facilitating post-assembly analysis such as gap closure and resolving repeats. There exist programs, such as BLAST and MUMmer, that can quickly align and identify high similarity segments between two sequences, which, when seen in a dot plot, tend to agglomerate along a diagonal but can also be disrupted by gaps or shifted away from the main diagonal due to mismatches between the contig and the reference. It is a tedious and practically impossible task to visually inspect the dot plot to identify the regions covered by a large number of contigs from sequence assembly projects. A forced global alignment between a contig and the reference is not only time consuming but often meaningless.</p> <p>Results</p> <p>We have developed an algorithm that uses the coordinates of all the exact matches or high similarity local alignments, clusters them with respect to the main diagonal in the dot plot using a weighted linear regression technique, and identifies the starting and ending coordinates of the region of interest.</p> <p>Conclusion</p> <p>This algorithm complements existing pairwise sequence alignment packages by replacing the time-consuming seed extension phase with a weighted linear regression for the alignment seeds. It was experimentally shown that the gain in execution time can be outstanding without compromising the accuracy. This method should be of great utility to sequence assembly and genome comparison projects.</p

    Percutaneous vascular interventions for acute ischaemic stroke.

    Get PDF
    peer-reviewedMost disabling strokes are due to blockage of a large artery in the brain by a blood clot. Prompt removal of the clot with intra-arterial thrombolytic drugs or mechanical devices, or both, can restore blood flow before major brain damage has occurred, leading to improved recovery. However, these so-called percutaneous vascular interventions can cause bleeding in the brain.PUBLISHEDpeer-reviewe

    Perinatal Environmental Tobacco Smoke Exposure in Rhesus Monkeys: Critical Periods and Regional Selectivity for Effects on Brain Cell Development and Lipid Peroxidation

    Get PDF
    Perinatal environmental tobacco smoke (ETS) exposure in humans elicits neurobehavioral deficits. We exposed rhesus monkeys to ETS during gestation and through 13 months postnatally, or postnatally only (6–13 months). At the conclusion of exposure, we examined cerebrocortical regions and the midbrain for cell damage markers and lipid peroxidation. For perinatal ETS, two archetypal patterns were seen in the various regions, one characterized by cell loss (reduced DNA concentration) and corresponding increases in cell size (increased protein/DNA ratio), and a second pattern suggesting replacement of larger neuronal cells with smaller and more numerous glia (increased DNA concentration, decreased protein/DNA ratio). The membrane/total protein ratio, a biomarker of neurite formation, also indicated potential damage to neuronal projections, accompanied by reactive sprouting. When ETS exposure was restricted to the postnatal period, the effects were similar in regional selectivity, direction, and magnitude. These patterns resemble the effects of prenatal nicotine exposure in rodent and primate models. Surprisingly, perinatal ETS exposure reduced the level of lipid peroxidation as assessed by the concentration of thiobarbituric acid reactive species, whereas postnatal ETS did not. The heart, a tissue that, like the brain, has high oxygen demand, displayed a similar but earlier decrease (2–3 months) in lipid peroxidation in the perinatal exposure model, whereas values were reduced at 13 months with the postnatal exposure paradigm. Our results provide a mechanistic connection between perinatal ETS exposure and neurobehavioral anomalies, reinforce the role of nicotine in these effects, and buttress the importance of restricting or eliminating ETS exposure in young children

    An elliptically symmetric angular Gaussian distribution

    Get PDF
    We define a distribution on the unit sphere Sd−1 called the elliptically symmetric angular Gaussian distribution. This distribution, which to our knowledge has not been studied before, is a subfamily of the angular Gaussian distribution closely analogous to the Kent subfamily of the general Fisher–Bingham distribution. Like the Kent distribution, it has elliptical contours, enabling modelling of rotational asymmetry about the mean direction, but it has the additional advantages of being simple and fast to simulate from, and having a density and hence likelihood that is easy and very quick to compute exactly. These advantages are especially beneficial for computationally intensive statistical methods, one example of which is a parametric bootstrap procedure for inference for the directional mean that we describe

    Assessing and reporting heterogeneity in treatment effects in clinical trials: a proposal

    Get PDF
    Mounting evidence suggests that there is frequently considerable variation in the risk of the outcome of interest in clinical trial populations. These differences in risk will often cause clinically important heterogeneity in treatment effects (HTE) across the trial population, such that the balance between treatment risks and benefits may differ substantially between large identifiable patient subgroups; the "average" benefit observed in the summary result may even be non-representative of the treatment effect for a typical patient in the trial. Conventional subgroup analyses, which examine whether specific patient characteristics modify the effects of treatment, are usually unable to detect even large variations in treatment benefit (and harm) across risk groups because they do not account for the fact that patients have multiple characteristics simultaneously that affect the likelihood of treatment benefit. Based upon recent evidence on optimal statistical approaches to assessing HTE, we propose a framework that prioritizes the analysis and reporting of multivariate risk-based HTE and suggests that other subgroup analyses should be explicitly labeled either as primary subgroup analyses (well-motivated by prior evidence and intended to produce clinically actionable results) or secondary (exploratory) subgroup analyses (performed to inform future research). A standardized and transparent approach to HTE assessment and reporting could substantially improve clinical trial utility and interpretability

    Getting into hot water:sick guppies frequent warmer thermal conditions

    Get PDF
    Ectotherms depend on the environmental temperature for thermoregulation and exploit thermal regimes that optimise physiological functioning. They may also frequent warmer conditions to up-regulate their immune response against parasite infection and/or impede parasite development. This adaptive response, known as ‘behavioural fever’, has been documented in various taxa including insects, reptiles and fish, but only in response to endoparasite infections. Here, a choice chamber experiment was used to investigate the thermal preferences of a tropical freshwater fish, the Trinidadian guppy (Poecilia reticulata), when infected with a common helminth ectoparasite Gyrodactylus turnbulli, in female-only and mixed-sex shoals. The temperature tolerance of G. turnbulli was also investigated by monitoring parasite population trajectories on guppies maintained at a continuous 18, 24 or 32 °C. Regardless of shoal composition, infected fish frequented the 32 °C choice chamber more often than when uninfected, significantly increasing their mean temperature preference. Parasites maintained continuously at 32 °C decreased to extinction within 3 days, whereas mean parasite abundance increased on hosts incubated at 18 and 24 °C. We show for the first time that gyrodactylid-infected fish have a preference for warmer waters and speculate that sick fish exploit the upper thermal tolerances of their parasites to self medicate

    Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species

    Get PDF
    The ability to efficiently and accurately determine genotypes is a keystone technology in modern genetics, crucial to studies ranging from clinical diagnostics, to genotype-phenotype association, to reconstruction of ancestry and the detection of selection. To date, high capacity, low cost genotyping has been largely achieved via “SNP chip” microarray-based platforms which require substantial prior knowledge of both genome sequence and variability, and once designed are suitable only for those targeted variable nucleotide sites. This method introduces substantial ascertainment bias and inherently precludes detection of rare or population-specific variants, a major source of information for both population history and genotype-phenotype association. Recent developments in reduced-representation genome sequencing experiments on massively parallel sequencers (commonly referred to as RAD-tag or RADseq) have brought direct sequencing to the problem of population genotyping, but increased cost and procedural and analytical complexity have limited their widespread adoption. Here, we describe a complete laboratory protocol, including a custom combinatorial indexing method, and accompanying software tools to facilitate genotyping across large numbers (hundreds or more) of individuals for a range of markers (hundreds to hundreds of thousands). Our method requires no prior genomic knowledge and achieves per-site and per-individual costs below that of current SNP chip technology, while requiring similar hands-on time investment, comparable amounts of input DNA, and downstream analysis times on the order of hours. Finally, we provide empirical results from the application of this method to both genotyping in a laboratory cross and in wild populations. Because of its flexibility, this modified RADseq approach promises to be applicable to a diversity of biological questions in a wide range of organisms

    MethCancerDB – aberrant DNA methylation in human cancer

    Get PDF
    Early detection, classification and prognosis of human cancers by analysis of CpG methylation carry huge diagnostic potential. MethCancerDB collects and annotates genes and sequences from the abundance of published methylation studies and interlinks them to all methylation-relevant bioinformatical resources. MethCancerDB starts with 4720 entries from 348 sources and is freely accessible at http://www.methcancerdb.net

    Complexity of the Inoculum Determines the Rate of Reversion of SIV Gag CD8 T Cell Mutant Virus and Outcome of Infection

    Get PDF
    Escape mutant (EM) virus that evades CD8+ T cell recognition is frequently observed following infection with HIV-1 or SIV. This EM virus is often less replicatively “fit” compared to wild-type (WT) virus, as demonstrated by reversion to WT upon transmission of HIV to a naïve host and the association of EM virus with lower viral load in vivo in HIV-1 infection. The rate and timing of reversion is, however, highly variable. We quantified reversion to WT of a series of SIV and SHIV viruses containing minor amounts of WT virus in pigtail macaques using a sensitive PCR assay. Infection with mixes of EM and WT virus containing ≥10% WT virus results in immediate and rapid outgrowth of WT virus at SIV Gag CD8 T cell epitopes within 7 days of infection of pigtail macaques with SHIV or SIV. In contrast, infection with biologically passaged SHIVmn229 viruses with much smaller proportions of WT sequence, or a molecular clone of pure EM SIVmac239, demonstrated a delayed or slow pattern of reversion. WT virus was not detectable until ≥8 days after inoculation and took ≥8 weeks to become the dominant quasispecies. A delayed pattern of reversion was associated with significantly lower viral loads. The diversity of the infecting inoculum determines the timing of reversion to WT virus, which in turn predicts the outcome of infection. The delay in reversion of fitness-reducing CD8 T cell escape mutations in some scenarios suggests opportunities to reduce the pathogenicity of HIV during very early infection
    corecore