172 research outputs found

    Acute inhalation of hypertonic saline does not improve mucociliary clearance in all children with cystic fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known of how mucociliary clearance (MCC) in children with cystic fibrosis (CF) and normal pulmonary function compares with healthy adults, or how an acute inhalation of 7% hypertonic saline (HS) aerosol affects MCC in these same children.</p> <p>Methods</p> <p>We compared MCC in 12 children with CF and normal pulmonary function after an acute inhalation of 0.12% saline (placebo), or HS, admixed with the radioisotope <sup>99 m</sup>technetium sulfur colloid in a double-blind, randomized, cross-over study. Mucociliary clearance on the placebo day in the children was also compared to MCC in 10 healthy, non-CF adults. Mucociliary clearance was quantified over a 90 min period, using gamma scintigraphy, and is reported as MCC at 60 min (MCC60) and 90 min (MCC90).</p> <p>Results</p> <p>Median [interquartile range] MCC60 and MCC90 in the children on the placebo visit were 15.4 [12.4-24.5]% and 19.3 [17.3-27.8%]%, respectively, which were similar to the adults with 17.8 [6.4-28.7]% and 29.6 [16.1-43.5]%, respectively. There was no significant improvement in MCC60 (2.2 [-6.2-11.8]%) or MCC90 (2.3 [-1.2-10.5]%) with HS, compared to placebo. In addition, 5/12 and 4/12 of the children showed a decrease in MCC60 and MCC90, respectively, after inhalation of HS. A <it>post hoc </it>subgroup analysis of the change in MCC90 after HS showed a significantly greater improvement in MCC in children with lower placebo MCC90 compared to those with higher placebo MCC90 (p = 0.045).</p> <p>Conclusions</p> <p>These data suggest that percent MCC varies significantly between children with CF lung disease and normal pulmonary functions, with some children demonstrating MCC values within the normal range and others showing MCC values that are below normal values. In addition, although MCC did not improve in all children after inhalation of HS, improvement did occur in children with relatively low MCC values after placebo. This finding suggests that acute inhalation of hypertonic saline may benefit a subset of children with low MCC values.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01293084">NCT01293084</a></p

    An Early Health Economic Analysis of the Potential Cost Effectiveness of an Adherence Intervention to Improve Outcomes for Patients with Cystic Fibrosis

    Get PDF
    Background Cystic fibrosis (CF) negatively impacts upon health-related quality of life and survival. Adherence to nebulised treatments is low; improving adherence is hypothesised to reduce rates of exacerbation requiring intravenous antibiotics and lung function decline. Objective A state transition model was developed to assess the cost effectiveness of an intervention aimed at increasing patient adherence to nebulised and inhaled antibiotics compared with current CF care, in advance of the forthcoming CFHealthHub randomised controlled trial (RCT). Methods The model estimated the costs and health outcomes for each option from the perspective of the UK National Health Service and Personal Social Services over a lifetime horizon. Health gains were valued in terms of quality-adjusted life-years (QALYs) gained. Forced expiratory volume in 1 second (FEV1) trajectories were predicted over three lung function strata: (1) FEV1 ≥70%, (2) FEV1 40–69% and (3) FEV1 <40%. Additional states were included to represent ‘post-lung transplantation’ and ‘dead’. The model was populated using CF Registry data, literature and expert opinion. Costs were presented at 2016 values. Uncertainty was assessed using deterministic and probabilistic sensitivity analyses. Results If effective, the adherence intervention is expected to produce an additional 0.19 QALYs and cost savings of £64,078 per patient. Across all analyses, the intervention dominated current care. Over a 5-year period, the intervention is expected to generate cost savings of £49.5 million for the estimated 2979 patients with CF with Pseudomonas aeruginosa currently aged ≥16 years in the UK. If applied to a broader population of adult patients with CF receiving any nebulised therapy, the expected savings could be considerably greater. Conclusions If effective, the adherence intervention is expected to produce additional health gains at a lower cost than current CF care. However, the economic analysis should be revisited upon completion of the full RCT. More generally, the analysis suggests that considerable gains could be accrued through the implementation of adherence interventions that shift care from expensive hospital-based rescue to community-based prevention

    Development of Functional and Molecular Correlates of Vaccine-Induced Protection for a Model Intracellular Pathogen, F. tularensis LVS

    Get PDF
    In contrast with common human infections for which vaccine efficacy can be evaluated directly in field studies, alternative strategies are needed to evaluate efficacy for slowly developing or sporadic diseases like tularemia. For diseases such as these caused by intracellular bacteria, serological measures of antibodies are generally not predictive. Here, we used vaccines varying in efficacy to explore development of clinically useful correlates of protection for intracellular bacteria, using Francisella tularensis as an experimental model. F. tularensis is an intracellular bacterium classified as Category A bioterrorism agent which causes tularemia. The primary vaccine candidate in the U.S., called Live Vaccine Strain (LVS), has been the subject of ongoing clinical studies; however, safety and efficacy are not well established, and LVS is not licensed by the U.S. FDA. Using a mouse model, we compared the in vivo efficacy of a panel of qualitatively different Francisella vaccine candidates, the in vitro functional activity of immune lymphocytes derived from vaccinated mice, and relative gene expression in immune lymphocytes. Integrated analyses showed that the hierarchy of protection in vivo engendered by qualitatively different vaccines was reflected by the degree of lymphocytes' in vitro activity in controlling the intramacrophage growth of Francisella. Thus, this assay may be a functional correlate. Further, the strength of protection was significantly related to the degree of up-regulation of expression of a panel of genes in cells recovered from the assay. These included IFN-γ, IL-6, IL-12Rβ2, T-bet, SOCS-1, and IL-18bp. Taken together, the results indicate that an in vitro assay that detects control of bacterial growth, and/or a selected panel of mediators, may ultimately be developed to predict the outcome of vaccine efficacy and to complement clinical trials. The overall approach may be applicable to intracellular pathogens in general

    Ribosomal oxygenases are structurally conserved from prokaryotes to humans

    Get PDF
    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases

    Influence of surgical approach on component positioning in primary total hip arthroplasty

    Get PDF
    Background: Minimal invasive surgery (MIS) has gained growing popularity in total hip arthroplasty (THA) but concerns exist regarding component malpositioning. The aim of the present study was to evaluate femoral and acetabular component positioning in primary cementless THA comparing a lateral to a MIS anterolateral approach. Methods: We evaluated 6 week postoperative radiographs of 52 hips with a minimal invasive anterolateral approach compared to 54 hips with a standard lateral approach. All hips had received the same type of implant for primary cementless unilateral THA and had a healthy hip contralaterally. Results: Hip offset was equally restored comparing both approaches. No influence of the approach was observed with regard to reconstruction of acetabular offset, femoral offset, vertical placement of the center of rotation, stem alignment and leg length discrepancy. However, with the MIS approach, a significantly higher percentage of cups (38.5 %) was malpositioned compared to the standard approach (16.7 %) (p = 0.022). Conclusions: The MIS anterolateral approach allows for comparable reconstruction of stem position, offset and center of rotation compared to the lateral approach. However, surgeons must be aware of a higher risk of cup malpositioning for inclination and anteversion using the MIS anterolateral approach

    Modulation of hepatic PPAR expression during Ft LVS LPS-induced protection from Francisella tularensis LVS infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been shown previously that administration of <it>Francisella tularensis </it>(<it>Ft</it>) Live Vaccine Strain (LVS) lipopolysaccharide (LPS) protects mice against subsequent challenge with <it>Ft </it>LVS and blunts the pro-inflammatory cytokine response.</p> <p>Methods</p> <p>To further investigate the molecular mechanisms that underlie <it>Ft </it>LVS LPS-mediated protection, we profiled global hepatic gene expression following <it>Ft </it>LVS LPS or saline pre-treatment and subsequent <it>Ft </it>LVS challenge using Affymetrix arrays.</p> <p>Results</p> <p>A large number of genes (> 3,000) were differentially expressed at 48 hours post-infection. The degree of modulation of inflammatory genes by infection was clearly attenuated by pre-treatment with <it>Ft </it>LVS LPS in the surviving mice. However, <it>Ft </it>LVS LPS alone had a subtle effect on the gene expression profile of the uninfected mice. By employing gene set enrichment analysis, we discovered significant up-regulation of the fatty acid metabolism pathway, which is regulated by peroxisome proliferator activated receptors (PPARs).</p> <p>Conclusions</p> <p>We hypothesize that the LPS-induced blunting of pro-inflammatory response in mouse is, in part, mediated by PPARs (α and γ).</p

    Independent policy learning: Contextual diffusion of active labour market policies

    Get PDF
    This chapter analyses in which ways diffusion based on interdependent policy learning explains the spread of active labour market policies (ALMP) in the OECD countries. By applying error correction models using multiplicative spatial Prais-Winsten regressions for analyzing the diffusion of ALMPs in 22 OECD countries from 1991–2013, we find evidence of governments adapting labour market policy strategies that have proven successful, that is, perform well in increasing labour market participation in other countries. However, interdependent learning is conditional on the institutional framework: policymakers rather learn from the experience of other countries in the same welfare regime. Even more importantly, the results bear witness to the importance of the European Employment Strategy (EES) as an international coordination framework facilitating policy learning

    Periostin is frequently overexpressed and enhances invasion and angiogenesis in oral cancer

    Get PDF
    Oral squamous-cell carcinoma (OSCC) is one of the most common types of human cancer. Typically OSCC cells show persistent invasion that frequently leads to local recurrence and distant lymphatic metastasis. We previously identified Periostin as the gene demonstrating the highest fold change expression in the invasive clone by comparing the transcriptional profile of parent OSCC cell line and a highly invasive clone. Here, we demonstrated that Periostin overexpression enhanced invasiveness in oral cancer cell lines. To know the role of Periostin in invasion, angiogenesis and metastasis in OSCC cases, we first examined the expression of Periostin mRNA in 31 OSCC cases by RT–PCR and Periostin protein in 74 OSCC cases by immunohistochemistry. Then, we compared the Periostin expression with invasion pattern, metastasis and blood vessel density. Periostin mRNA and protein overexpression were frequently found in OSCC cases and Periostin expression was well correlated with the invasion pattern and metastasis. Moreover, blood vessel density of Periostin-positive cases was higher than those of Periostin-negative cases. Interestingly, recombinant Periostin enhanced capillary formation in vitro in a concentration-dependant manner. In summary, these findings suggest that Periostin may promote invasion and angiogenesis in OSCC, and that Periostin can be a strong marker for prediction of metastasis in oral cancer patients

    Direct Visualization of Protease Action on Collagen Triple Helical Structure

    Get PDF
    Enzymatic processing of extracellular matrix (ECM) macromolecules by matrix metalloproteases (MMPs) is crucial in mediating physiological and pathological cell processes. However, the molecular mechanisms leading to effective physiological enzyme-ECM interactions remain elusive. Only scant information is available on the mode by which matrix proteases degrade ECM substrates. An example is the enzymatic degradation of triple helical collagen II fragments, generated by the collagenase MMP-8 cleavage, during the course of acute inflammatory conditions by gelatinase B/MMP-9. As is the case for many other matrix proteases, it is not clear how MMP-9 recognizes, binds and digests collagen in this important physiological process. We used single molecule imaging to directly visualize this protease during its interaction with collagen fragments. We show that the initial binding is mediated by the diffusion of the protease along the ordered helix on the collagen ¾ fragment, with preferential binding of the collagen tail. As the reaction progressed and prior to collagen degradation, gelatin-like morphologies resulting from the denaturation of the triple helical collagen were observed. Remarkably, this activity was independent of enzyme proteolysis and was accompanied by significant conformational changes of the working protease. Here we provide the first direct visualization of highly complex mechanisms of macromolecular interactions governing the enzymatic processing of ECM substrates by physiological protease
    • …
    corecore