10 research outputs found

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Coping with Temperature at the Warm Edge – Patterns of Thermal Adaptation in the Microbial Eukaryote Paramecium caudatum

    Get PDF
    Ectothermic organisms are thought to be severely affected by global warming since their physiological performance is directly dependent on temperature. Latitudinal and temporal variations in mean temperatures force ectotherms to adapt to these complex environmental conditions. Studies investigating current patterns of thermal adaptation among populations of different latitudes allow a prediction of the potential impact of prospective increases in environmental temperatures on their fitness.In this study, temperature reaction norms were ascertained among 18 genetically defined, natural clones of the microbial eukaryote Paramecium caudatum. These different clones have been isolated from 12 freshwater habitats along a latitudinal transect in Europe and from 3 tropical habitats (Indonesia). The sensitivity to increasing temperatures was estimated through the analysis of clone specific thermal tolerances and by relating those to current and predicted temperature data of their natural habitats. All investigated European clones seem to be thermal generalists with a broad thermal tolerance and similar optimum temperatures. The weak or missing co-variation of thermal tolerance with latitude does not imply local adaptation to thermal gradients; it rather suggests adaptive phenotypic plasticity among the whole European subpopulation. The tested Indonesian clones appear to be locally adapted to the less variable, tropical temperature regime and show higher tolerance limits, but lower tolerance breadths.Due to the lack of local temperature adaptation within the European subpopulation, P. caudatum genotypes at the most southern edge of their geographic range seem to suffer from the predicted increase in magnitude and frequency of summer heat waves caused by climate change

    The Newly Developed CRF1-Receptor Antagonists, NGD 98-2 and NGD 9002, Suppress Acute Stress-Induced Stimulation of Colonic Motor Function and Visceral Hypersensitivity in Rats

    Get PDF
    Corticotropin releasing factor receptor 1 (CRF(1)) is the key receptor that mediates stress-related body responses. However to date there are no CRF(1) antagonists that have shown clinical efficacy in stress-related diseases. We investigated the inhibitory effects of a new generation, topology 2 selective CRF(1) antagonists, NGD 98-2 and NGD 9002 on exogenous and endogenous CRF-induced stimulation of colonic function and visceral hypersensitivity to colorectal distension (CRD) in conscious rats. CRF(1) antagonists or vehicle were administered orogastrically (og) or subcutaneously (sc) before either intracerebroventricular (icv) or intraperitoneal (ip) injection of CRF (10 µg/kg), exposure to water avoidance stress (WAS, 60 min) or repeated CRD (60 mmHg twice, 10 min on/off at a 30 min interval). Fecal pellet output (FPO), diarrhea and visceromotor responses were monitored. In vehicle (og)-pretreated rats, icv CRF stimulated FPO and induced diarrhea in >50% of rats. NGD 98-2 or NGD 9002 (3, 10 and 30 mg/kg, og) reduced the CRF-induced FPO response with an inhibitory IC(50) of 15.7 and 4.3 mg/kg respectively. At the highest dose, og NGD 98-2 or NGD 9002 blocked icv CRF-induced FPO by 67–87% and decreased WAS-induced-FPO by 23–53%. When administered sc, NGD 98-2 or NGD 9002 (30 mg/kg) inhibited icv and ip CRF-induced-FPO. The antagonists also prevented the development of nociceptive hyper-responsivity to repeated CRD. These data demonstrate that topology 2 CRF(1) antagonists, NGD 98-2 and NGD 9002, administered orally, prevented icv CRF-induced colonic secretomotor stimulation, reduced acute WAS-induced defecation and blocked the induction of visceral sensitization to repeated CRD

    Colonic Motility: From Bench Side to Bedside

    No full text
    corecore