76 research outputs found

    Secular Evolution and the Growth of Pseudobulges in Disk Galaxies

    Full text link
    Galaxy evolution is in transition from an early universe dominated by hierarchical clustering to a future dominated by secular processes. These result from interactions involving collective phenomena such as bars, oval disks, spiral structure, and triaxial dark halos. This paper summarizes a review by Kormendy & Kennicutt (2004) using, in part, illustrations of different galaxies. In simulations, bars rearrange disk gas into outer rings, inner rings, and galactic centers, where high gas densities feed starbursts. Consistent with this picture, many barred and oval galaxies have dense central concentrations of gas and star formation rates that can build bulge-like stellar densities on timescales of a few billion years. We conclude that secular evolution builds dense central components in disk galaxies that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges. Many pseudobulges can be recognized because they have characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions, (4) spiral structure or nuclear bars, (5) nearly exponential brightness profiles, and (6) starbursts. These structures occur preferentially in barred and oval galaxies in which secular evolution should be most rapid. Thus a variety of observational and theoretical results contribute to a new paradigm of secular evolution that complements hierarchical clustering.Comment: 19 pages, 9 Postscript figures; requires kapproc.cls and procps.sty; to appear in "Penetrating Bars Through Masks of Cosmic Dust: The Hubble Tuning Fork Strikes a New Note", ed. Block, Freeman, Puerari, Groess, and Block, Dordrecht: Kluwer, in press; for a version with full resolution figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm

    Genome-Wide Transcript Profiling of Endosperm without Paternal Contribution Identifies Parent-of-Origin–Dependent Regulation of AGAMOUS-LIKE36

    Get PDF
    Seed development in angiosperms is dependent on the interplay among different transcriptional programs operating in the embryo, the endosperm, and the maternally-derived seed coat. In angiosperms, the embryo and the endosperm are products of double fertilization during which the two pollen sperm cells fuse with the egg cell and the central cell of the female gametophyte. In Arabidopsis, analyses of mutants in the cell-cycle regulator CYCLIN DEPENDENT KINASE A;1 (CKDA;1) have revealed the importance of a paternal genome for the effective development of the endosperm and ultimately the seed. Here we have exploited cdka;1 fertilization as a novel tool for the identification of seed regulators and factors involved in parent-of-origin–specific regulation during seed development. We have generated genome-wide transcription profiles of cdka;1 fertilized seeds and identified approximately 600 genes that are downregulated in the absence of a paternal genome. Among those, AGAMOUS-LIKE (AGL) genes encoding Type-I MADS-box transcription factors were significantly overrepresented. Here, AGL36 was chosen for an in-depth study and shown to be imprinted. We demonstrate that AGL36 parent-of-origin–dependent expression is controlled by the activity of METHYLTRANSFERASE1 (MET1) maintenance DNA methyltransferase and DEMETER (DME) DNA glycosylase. Interestingly, our data also show that the active maternal allele of AGL36 is regulated throughout endosperm development by components of the FIS Polycomb Repressive Complex 2 (PRC2), revealing a new type of dual epigenetic regulation in seeds

    The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation

    Get PDF
    Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Dust in Nearby Galaxy Groups?

    No full text

    Cosmological parameters and redshift periodicity

    No full text
    This work is the continuation of the search for such a cosmological model using which the observed redshift distribution of galaxies in the sample of Broadhurst et al. (1990) turns out to be maximally periodic in the calculated spatial distance. In a previous work, Paal et al. (1992) have demonstrated that among the flat models with non-negative cosmological constant (i.e., vacuum density) the one with a vacuum:dust ratio 2 : 1 provides the optimum. Now we extend that study to the case of arbitrary space curvature and find equally good periodicity in a surprisingly wide range of models. By use of the dimensionless parameters OMEGA0 = rho0/rho(crit) = lambda0 = LAMBDA/3H0(2) acceptable periodicity is obtained for all points of the parameter plane within the strip between the parallel lines 0.83OMEGA0 - 0.30 < lambda0(OMEGA0) < 0.83OMEGA0 + 0.85 (OMEGA0 < 1.8), whilst the best periodicities appear along the line lambda0 = 0.83OMEGA0 + 0.39 fitting to the previous optimum at OMEGA0 = 1/3, lambda0 = 2/3. Any nonpositive value of lambda0 gives bad periodicity unless the space curvature is strongly negative and OMEGA0 < 0.4. Fairly good periodicity is observed only in the range of the deceleration parameter - 1.2 less-than-or-equal-t0 q0 < 0.2, corresponding to a small or even negative total gravitational attraction and an expansion time-scale longer than usually expected

    Possible Existence of Dust in Nearby Galaxy Group

    No full text

    Increasing CO2 from subambient to superambient concentrations alters species composition and increases above-ground biomass in a C3/C4 grassland

    Get PDF
    The glacial-to-present increase in atmospheric CO2 concentration is likely to have stimulated plant production, but experimental tests in natural ecosystems are lacking
    corecore