Galaxy evolution is in transition from an early universe dominated by
hierarchical clustering to a future dominated by secular processes. These
result from interactions involving collective phenomena such as bars, oval
disks, spiral structure, and triaxial dark halos. This paper summarizes a
review by Kormendy & Kennicutt (2004) using, in part, illustrations of
different galaxies. In simulations, bars rearrange disk gas into outer rings,
inner rings, and galactic centers, where high gas densities feed starbursts.
Consistent with this picture, many barred and oval galaxies have dense central
concentrations of gas and star formation rates that can build bulge-like
stellar densities on timescales of a few billion years. We conclude that
secular evolution builds dense central components in disk galaxies that look
like classical, merger-built bulges but that were made slowly out of disk gas.
We call these pseudobulges. Many pseudobulges can be recognized because they
have characteristics of disks: (1) flatter shapes than those of classical
bulges, (2) correspondingly large ratios of ordered to random velocities, (3)
small velocity dispersions, (4) spiral structure or nuclear bars, (5) nearly
exponential brightness profiles, and (6) starbursts. These structures occur
preferentially in barred and oval galaxies in which secular evolution should be
most rapid. Thus a variety of observational and theoretical results contribute
to a new paradigm of secular evolution that complements hierarchical
clustering.Comment: 19 pages, 9 Postscript figures; requires kapproc.cls and procps.sty;
to appear in "Penetrating Bars Through Masks of Cosmic Dust: The Hubble
Tuning Fork Strikes a New Note", ed. Block, Freeman, Puerari, Groess, and
Block, Dordrecht: Kluwer, in press; for a version with full resolution
figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm