15 research outputs found

    The power-capture of a nearshore, modular, flap-type wave energy converter in regular waves

    Get PDF
    Bottom-hinged, nearshore flap-type wave energy converters (WECs), have several advantages, such as high power conversion efficiency and survivability. They typically comprise a single flap spanning their full width. However, a potentially beneficial design change would be to split the flap into multiple modules, to make a ‘Modular Flap’. This could provide improvements, such as increased power-capture, reduced foundation loads and lower manufacturing and installation costs. Assessed in this work is the hydrodynamic power-capture of this device, based on physical modelling. Comparisons are made to an equivalent ‘Rigid Flap’. Tests are conducted in regular, head-on and off-angle waves. The simplest control strategy, of damping each module equally, is employed. The results show that, for head-on waves, the power increases towards the centre of the device, with the central modules generating 68% of the total power. Phase differences are also present. Consequently, the total power produced by the Modular Flap is, on average, 23% more smooth than that generated by the Rigid Flap. The Modular Flap has 3% and 1% lower average power-capture than the Rigid Flap in head-on and off-angle waves, respectively. The advantages of the modular concept may therefore be exploited without significantly compromising the power-capture of the flap-type WEC

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Substanzgruppen

    No full text
    corecore