33 research outputs found

    Actinobacillus pleuropneumoniae serovar 8 predominates in England and Wales

    Get PDF
    This work was supported by a Longer and Larger (LoLa) grant from the Biotechnology and Biological Sciences Research Council (BBSRC grant numbers BB/G020744/1, BB/G019177/1, BB/G019274/1 and BB/G018553/1) and Zoetis (formerly Pfizer Animal Health) awarded to the Bacterial Respiratory Diseases of Pigs-1 Technology (BRaDP1T) Consortium

    The importance of Real-Life research in Respiratory Medicine: Manifesto of the Respiratory Effectiveness Group:Endorsed by the International Primary Care Respiratory Group and the World Allergy Organization

    Get PDF
    status: publishe

    Pharmaceutical care as a strategy to improve the safety and effectiveness of patients? pharmacotherapy at a pharmacy school: a practical proposal

    Get PDF
    Several patients experience at least one drug-related problem and Pharmaceutical Care can change this reality. This work describes a model for structuring the pharmaceutical care service at a pharmacy training unit of the Brazilian Public Health System based on pharmacotherapy follow-up program of Parkinson’s disease patients’ results. From the follow-up results (phase 1), a Therapy Management Scheme was designed (phase 2). Of the 57 patients followed-up, 30 presented at least one drug-related problem and 42% were non-adherent to treatment, which supported the need of pharmacotherapy management. The Pharmacotherapy Management Scheme was proposed as a pharmaceutical care service model, which presents 6 steps: first, the pharmacist fills out the dispensing form and assesses patient´s pharmacotherapy, if there is a suspect problem, he is invited to the follow-up (steps 1 and 2) and they agree the first appointment. After that, pharmacist studies the patient’s case (study phase, steps 3 and 4). At the second meeting, the pharmacist proposes the intervention needed, and at the third, assesses the intervention results and new problems (steps 5 and 6, respectively). The process ends when all therapeutics outcomes are reached. This practical model can significantly contributed to the development and organization of pharmaceutical care services

    Rationally designed mariner vectors for functional genomic analysis of Actinobacillus pleuropneumoniae and other Pasteurellaceae species by transposon-directed insertion-site sequencing (TraDIS).

    Get PDF
    Comprehensive identification of conditionally essential genes requires efficient tools for generating high-density transposon libraries that, ideally, can be analysed using next-generation sequencing methods such as Transposon Directed Insertion-site Sequencing (TraDIS). The Himar1 (mariner) transposon is ideal for generating near-saturating mutant libraries, especially in AT-rich chromosomes, as the requirement for integration is a TA dinucleotide, and this transposon has been used for mutagenesis of a wide variety of bacteria. However, plasmids for mariner delivery do not necessarily work well in all bacteria. In particular, there are limited tools for functional genomic analysis of Pasteurellaceae species of major veterinary importance, such as swine and cattle pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, respectively. Here, we developed plasmids, pTsodCPC9 and pTlacPC9 (differing only in the promoter driving expression of the transposase gene), that allow delivery of mariner into both these pathogens, but which should also be applicable to a wider range of bacteria. Using the pTlacPC9 vector, we have generated, for the first time, saturating mariner mutant libraries in both A. pleuropneumoniae and P. multocida that showed a near random distribution of insertions around the respective chromosomes as detected by TraDIS. A preliminary screen of 5000 mutants each identified 8 and 14 genes, respectively, that are required for growth under anaerobic conditions. Future high-throughput screening of the generated libraries will facilitate identification of mutants required for growth under different conditions, including in vivo, highlighting key virulence factors and pathways that can be exploited for development of novel therapeutics and vaccines

    Optimal Randomized Fair Exchange with Secret Shared Coins

    Full text link
    Abstract. In the fair exchange problem, mutually untrusting parties must securely exchange digital goods. A fair exchange protocol must ensure that no combination of cheating or failures will result in some goods being delivered but not others, and that all goods will be delivered in the absence of cheating and failures. This paper proposes two novel randomized protocols for solving fair exchange using simple trusted units. Both protocols have an optimal expected running time, completing in a constant (3) expected number of rounds. They also have optimal resilience. The first one tolerates any number of dishonest parties, as long as one is honest, while the second one, which assumes more aggressive cheating and failures assumptions, tolerates up to a minority of dishonest parties. The key insight is similar to the idea underlying the code-division multiple access (CDMA) communication protocol: outwitting an adversary is much easier if participants share a common, secret pseudo-random number generator.
    corecore