273 research outputs found

    Quantum central limit theorem for continuous-time quantum walks on odd graphs in quantum probability theory

    Full text link
    The method of the quantum probability theory only requires simple structural data of graph and allows us to avoid a heavy combinational argument often necessary to obtain full description of spectrum of the adjacency matrix. In the present paper, by using the idea of calculation of the probability amplitudes for continuous-time quantum walk in terms of the quantum probability theory, we investigate quantum central limit theorem for continuous-time quantum walks on odd graphs.Comment: 19 page, 1 figure

    Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics

    Full text link
    In this work we outline the two most commonly used test theories (RMS and SME) for testing Local Lorentz Invariance (LLI) of the photon. Then we develop the general framework of applying these test theories to resonator experiments with an emphasis on rotating experiments in the laboratory. We compare the inherent sensitivity factors of common experiments and propose some new configurations. Finally we apply the test theories to the rotating cryogenic experiment at the University of Western Australia, which recently set new limits in both the RMS and SME frameworks [hep-ph/0506074].Comment: Submitted to Lecture Notes in Physics, 36 pages, minor modifications, updated list of reference

    Phonon Pulse Shape Discrimination in SuperCDMS Soudan

    Full text link
    SuperCDMS is the next phase of the Cryogenic Dark Matter Search experiment, which measures both phonon and charge signals generated by particle recoils within a germanium target mass. Charge signals are employed both in the definition of a fiducial volume and in the rejection of electron recoil background events. Alternatively, phonons generated by the charge carriers can also be used for the same two goals. This paper describes preliminary efforts to observe and quantify these contributions to the phonon signal and then use them to reject background events. A simple analysis using only one pulse shape parameter shows bulk electron recoil vs. bulk nuclear recoil discrimination to the level of 1:10^3 (limited by the statistics of the data), with little degradation in discrimination ability down to at least 7 keV recoil energy. Such phonon-only discrimination can provide a useful cross-check to the standard discrimination methods, and it also points towards the potential of a device optimized for a phonon-only measurement.Comment: Low Temperature Detector 14 conference proceedings, to be published in a special issue of the Journal of Low Temperature Physic

    A Study of the S=1/2 Alternating Chain using Multiprecision Methods

    Full text link
    In this paper we present results for the ground state and low-lying excitations of the S=1/2S=1/2 alternating Heisenberg antiferromagnetic chain. Our more conventional techniques include perturbation theory about the dimer limit and numerical diagonalization of systems of up to 28 spins. A novel application of multiple precision numerical diagonalization allows us to determine analytical perturbation series to high order; the results found using this approach include ninth-order perturbation series for the ground state energy and one magnon gap, which were previously known only to third order. We also give the fifth-order dispersion relation and third-order exclusive neutron scattering structure factor for one-magnon modes and numerical and analytical binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm

    CDMS, Supersymmetry and Extra Dimensions

    Get PDF
    The CDMS experiment aims to directly detect massive, cold dark matter particles originating from the Milky Way halo. Charge and lattice excitations are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK, allowing to separate nuclear recoils from the dominating electromagnetic background. The operation of 12 detectors in the Soudan mine for 75 live days in 2004 delivered no evidence for a signal, yielding stringent limits on dark matter candidates from supersymmetry and universal extra dimensions. Thirty Ge and Si detectors are presently installed in the Soudan cryostat, and operating at base temperature. The run scheduled to start in 2006 is expected to yield a one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on sources and detection of dark matter and dark energy in the universe, Marina del Rey, Feb 22-24, 200

    Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

    Full text link
    We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    High-temperature deformation behavior of a gamma TiAl alloy-microstructural evolution and mechanisms

    Get PDF
    The present investigation was carried out in the context of the internal-variable theory of inelastic deformation and the dynamic-materials model (DMM), to shed light on the high-temperature deformation mechanisms in TiAl. A series of load-relaxation tests and tensile tests were conducted on a fine-grained duplex gamma TiAl alloy at temperatures ranging from 800 degreesC to 1050 degreesC. Results of the load-relaxation tests, in which the deformation took place at an infinitesimal level (epsilon congruent to 0.05), showed that the deformation behavior of the alloy was well described by the sum of dislocation-glide and dislocation-climb processes. To investigate the deformation behavior of the fine-grained duplex gamma TiAl alloy at a finite strain level, processing maps were constructed on the basis of a DMM. For this purpose, compression tests were carried out at temperatures ranging from 800 degreesC to 1250 degreesC using strain rates ranging from 10 to 10(-4)/s. Two domains were identified and characterized in the processing maps obtained at finite strain levels (0.2 and 0.6). One domain was found in the region of 980 degreesC and 10(-3)/s with a peak efficiency (maximum efficiency of power dissipation) of 48 pct and was identified as a domain of dynamic recrystallization (DRx) from microstructural observations. Another domain with a peak efficiency of 64 pct was located in the region of 1250 degreesC and 10(-4)/s and was considered to be a domain of superplasticity.ope
    corecore