88 research outputs found

    Behaviour of topi in a shadeless environment

    Get PDF
    No Abstract

    How unpredictable is the individual scanning process in socially foraging mammals?

    Get PDF
    In group-forming prey species, theory assumes that individuals within groups should scan independently of one another, with vigilance sequences being relatively unpredictable, making interscan durations highly variable. We attempted to detect any divergence from randomness in the scanning process in three mammalian prey species phylogenetically and geographically separated and exposed to different levels of predation: waterbuck, Kobus ellipsiprymnus defassa, under a high observed predation risk, eastern grey kangaroo, Macropus giganteus, still experiencing occasional predation and European roe deer, Capreolus capreolus, under a very low natural predation risk. Our results revealed that the focal interscan duration increased when the duration of the preceding interscan increased, whatever the studied species and the predation risk that its individuals experienced, and decreased with the preceding scan duration in two species under, respectively, occasional and low predation risks. The exponential distribution was the tested model that fitted the observed distributions of interscan durations least well. We discuss what can trigger non-randomness in scanning, through a non-homogenous Poisson process, at both intra-individual and inter-individual levels, particularly with regard to previous studies that have demonstrated synchronisation of vigilance in such mammals. Our results suggest the need to reconsider any assumption of randomness in scanning in the basic model predicting form and frequency of scanning behaviour by prey species

    Using nanoscopy to probe the biological activity of antimicrobial leads that display potent activity against pathogenic, multidrug resistant, gram-negative bacteria

    Get PDF
    Medicinal leads that are also compatible with imaging technologies are attractive, as they facilitate the development of therapeutics through direct mechanistic observations at the molecular level. In this context, the uptake and antimicrobial activities of several luminescent dinuclear RuII complexes against E. coli were assessed and compared to results obtained for another ESKAPE pathogen, the Gram-positive major opportunistic pathogen Enterococcus faecalis, V583. The most promising lead displays potent activity, particularly against the Gram-negative bacteria, and potency is retained in the uropathogenic multidrug resistant EC958 ST131 strain. Exploiting the inherent luminescent properties of this complex, super-resolution STED nanoscopy was used to image its initial localization at/in cellular membranes and its subsequent transfer to the cell poles. Membrane damage assays confirm that the complex disrupts the bacterial membrane structure before internalization. Mammalian cell culture and animal model studies indicate that the complex is not toxic to eukaryotes, even at concentrations that are several orders of magnitude higher than its minimum inhibitory concentration (MIC). Taken together, these results have identified a lead molecular architecture for hard-to-treat, multiresistant, Gram-negative bacteria, which displays activities that are already comparable to optimized natural product-based leads

    A ruthenium(II) polypyridyl complex disrupts actin cytoskeleton assembly and blocks cytokinesis

    Get PDF
    The dinuclear Ru(II) complex [(Ru(phen) 2 ) 2 (tpphz)] 4+ (phen = 1,10-phenanthroline, tpphz = tetrapyridophenazine) “RuRuPhen” blocks the transformation of G-actin to F-actin filaments with no disassembly of pre-formed F-actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G-actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility, due to this effect RuRuPhen interferes with late-stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with ESCRT complex recruitmen

    Homo- and Heteroleptic Phototoxic Dinuclear Metallo-Intercalators Based on Ru II (dppn) Intercalating Moieties: Synthesis, Optical and Biological Studies

    Get PDF
    Using a new mononuclear “building block,” for the first time, a dinuclear RuII(dppn) complex and a heteroleptic system containing both RuII(dppz) and RuII(dppn) moieties are reported. The complexes, including the mixed dppz/dppn system, are 1O2 sensitizers. However, unlike the homoleptic dppn systems, the mixed dppz/dppn complex also displays a luminescence “switch on” DNA light-switch effect. In both cisplatin sensitive and resistant human ovarian carcinoma lines the dinuclear complexes show enhanced uptake compared to their mononuclear analogue. Thanks to a favorable combination of singlet oxygen generation and cellular uptake properties all three of the new complexes are phototoxic and display potent activity against chemotherapeutically resistant cells

    Making the right link to theranostics : the photophysical and biological properties of dinuclear Ru^II-Re^I dppz complexes depend on their tether

    Get PDF
    The synthesis of new dinuclear complexes containing linked RuII(dppz) and ReI(dppz) moieties is reported. The photophysical and biological properties of the new complex, which incorporates a N,N′-bis(4-pyridylmethyl)-1,6-hexanediamine tether ligand, are compared to a previously reported RuII/ReI complex linked by a simple dipyridyl alkane ligand. Although both complexes bind to DNA with similar affinities, steady-state and time-resolved photophysical studies reveal that the nature of the linker affects the excited state dynamics of the complexes and their DNA photocleavage properties. Quantum-based DFT calculations on these systems offer insights into these effects. While both complexes are live cells permeant, their intracellular localizations are significantly affected by the nature of the linker. Notably, one of the complexes displayed concentration-dependent localization and possesses photophysical properties that are compatible with SIM and STED nanoscopy. This allowed the dynamics of its intracellular localization to be tracked at super resolutions

    Short and long term outcome of bilateral pallidal stimulation in chorea-acanthocytosis

    Get PDF
    BACKGROUND: Chorea-acanthocytosis (ChAc) is a neuroacanthocytosis syndrome presenting with severe movement disorders poorly responsive to drug therapy. Case reports suggest that bilateral deep brain stimulation (DBS) of the ventro-postero-lateral internal globus pallidus (GPi) may benefit these patients. To explore this issue, the present multicentre (n=12) retrospective study collected the short and long term outcome of 15 patients who underwent DBS. METHODS: Data were collected in a standardized way 2-6 months preoperatively, 1-5 months (early) and 6 months or more (late) after surgery at the last follow-up visit (mean follow-up: 29.5 months). RESULTS: Motor severity, assessed by the Unified Huntington's Disease Rating Scale-Motor Score, UHDRS-MS), was significantly reduced at both early and late post-surgery time points (mean improvement 54.3% and 44.1%, respectively). Functional capacity (UHDRS-Functional Capacity Score) was also significantly improved at both post-surgery time points (mean 75.5% and 73.3%, respectively), whereas incapacity (UHDRS-Independence Score) improvement reached significance at early post-surgery only (mean 37.3%). Long term significant improvement of motor symptom severity (≥ 20 % from baseline) was observed in 61.5 % of the patients. Chorea and dystonia improved, whereas effects on dysarthria and swallowing were variable. Parkinsonism did not improve. Linear regression analysis showed that preoperative motor severity predicted motor improvement at both post-surgery time points. The most serious adverse event was device infection and cerebral abscess, and one patient died suddenly of unclear cause, 4 years after surgery. CONCLUSION: This study shows that bilateral DBS of the GPi effectively reduces the severity of drug-resistant hyperkinetic movement disorders such as present in ChAc

    Cognitive and psychiatric symptom trajectories 2–3 years after hospital admission for COVID-19: a longitudinal, prospective cohort study in the UK

    Get PDF
    Background COVID-19 is known to be associated with increased risks of cognitive and psychiatric outcomes after the acute phase of disease. We aimed to assess whether these symptoms can emerge or persist more than 1 year after hospitalisation for COVID-19, to identify which early aspects of COVID-19 illness predict longer-term symptoms, and to establish how these symptoms relate to occupational functioning. Methods The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a prospective, longitudinal cohort study of adults (aged ≥18 years) who were hospitalised with a clinical diagnosis of COVID-19 at participating National Health Service hospitals across the UK. In the C-Fog study, a subset of PHOSP-COVID participants who consented to be recontacted for other research were invited to complete a computerised cognitive assessment and clinical scales between 2 years and 3 years after hospital admission. Participants completed eight cognitive tasks, covering eight cognitive domains, from the Cognitron battery, in addition to the 9-item Patient Health Questionnaire for depression, the Generalised Anxiety Disorder 7-item scale, the Functional Assessment of Chronic Illness Therapy Fatigue Scale, and the 20-item Cognitive Change Index (CCI-20) questionnaire to assess subjective cognitive decline. We evaluated how the absolute risks of symptoms evolved between follow-ups at 6 months, 12 months, and 2–3 years, and whether symptoms at 2–3 years were predicted by earlier aspects of COVID-19 illness. Participants completed an occupation change questionnaire to establish whether their occupation or working status had changed and, if so, why. We assessed which symptoms at 2–3 years were associated with occupation change. People with lived experience were involved in the study. Findings 2469 PHOSP-COVID participants were invited to participate in the C-Fog study, and 475 participants (191 [40·2%] females and 284 [59·8%] males; mean age 58·26 [SD 11·13] years) who were discharged from one of 83 hospitals provided data at the 2–3-year follow-up. Participants had worse cognitive scores than would be expected on the basis of their sociodemographic characteristics across all cognitive domains tested (average score 0·71 SD below the mean [IQR 0·16–1·04]; p<0·0001). Most participants reported at least mild depression (263 [74·5%] of 353), anxiety (189 [53·5%] of 353), fatigue (220 [62·3%] of 353), or subjective cognitive decline (184 [52·1%] of 353), and more than a fifth reported severe depression (79 [22·4%] of 353), fatigue (87 [24·6%] of 353), or subjective cognitive decline (88 [24·9%] of 353). Depression, anxiety, and fatigue were worse at 2–3 years than at 6 months or 12 months, with evidence of both worsening of existing symptoms and emergence of new symptoms. Symptoms at 2–3 years were not predicted by the severity of acute COVID-19 illness, but were strongly predicted by the degree of recovery at 6 months (explaining 35·0–48·8% of the variance in anxiety, depression, fatigue, and subjective cognitive decline); by a biocognitive profile linking acutely raised D-dimer relative to C-reactive protein with subjective cognitive deficits at 6 months (explaining 7·0–17·2% of the variance in anxiety, depression, fatigue, and subjective cognitive decline); and by anxiety, depression, fatigue, and subjective cognitive deficit at 6 months. Objective cognitive deficits at 2–3 years were not predicted by any of the factors tested, except for cognitive deficits at 6 months, explaining 10·6% of their variance. 95 of 353 participants (26·9% [95% CI 22·6–31·8]) reported occupational change, with poor health being the most common reason for this change. Occupation change was strongly and specifically associated with objective cognitive deficits (odds ratio [OR] 1·51 [95% CI 1·04–2·22] for every SD decrease in overall cognitive score) and subjective cognitive decline (OR 1·54 [1·21–1·98] for every point increase in CCI-20). Interpretation Psychiatric and cognitive symptoms appear to increase over the first 2–3 years post-hospitalisation due to both worsening of symptoms already present at 6 months and emergence of new symptoms. New symptoms occur mostly in people with other symptoms already present at 6 months. Early identification and management of symptoms might therefore be an effective strategy to prevent later onset of a complex syndrome. Occupation change is common and associated mainly with objective and subjective cognitive deficits. Interventions to promote cognitive recovery or to prevent cognitive decline are therefore needed to limit the functional and economic impacts of COVID-19. Funding National Institute for Health and Care Research Oxford Health Biomedical Research Centre, Wolfson Foundation, MQ Mental Health Research, MRC-UK Research and Innovation, and National Institute for Health and Care Research

    Post-acute COVID-19 neuropsychiatric symptoms are not associated with ongoing nervous system injury

    Get PDF
    A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore